\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{combinatorial Hopf algebra} Some [[Hopf algebra]]s encode relevant combinatorial information and are quite common and useful in [[algebraic combinatorics]] in general. More recently Hopf algebras appeared also in the study of [[renormalization]] of QFT, controlling its combinatorics. Combinatorial Hopf algebra may refer either to a Hopf algebra coming from combinatorics (and, in particular, to the study of various rings of symmetric functions), but also to the now standard notion of a pair, $(H,\zeta)$, consisting of a Hopf algebra $H$ over $k$ together with a character $\zeta: H\to k$, the zeta function of a Hopf algebra. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} One of the original sources is: \begin{itemize}% \item S. A. Joni and [[Gian-Carlo Rota]], \emph{Coalgebras and bialgebras in combinatorics}, Umbral Calculus and Hopf Algebras (Norman, OK, 1978), Contemp. Math., vol. 6, AMS, Providence, RI, 1982. \end{itemize} There is also another early article from Rota: \begin{itemize}% \item [[Gian-Carlo Rota]], \emph{Hopf algebra methods in combinatorics}, Probl\`e{}mes combinatoires et th\'e{}orie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 363--365, Colloq. Internat. CNRS \textbf{260}, CNRS, Paris 1978. \end{itemize} (Despite the title, though, this is just a short note that mainly discusses applications of Rota's theory to the so-called [[umbral calculus]], without making the Hopf algebra structure explicit.) For the basic intuition for Hopf algebras in combinatorics see the chapter 5 of [[S. Majid]]`s \emph{Foundation of quantum group theory}. Nowadays the major book on combinatorial Hopf algebras is \begin{itemize}% \item [[Marcelo Aguiar]], Swapneel Mahajan, \emph{[[Monoidal Functors, Species and Hopf Algebras]]}, With forewords by [[Kenneth Brown]], Stephen Chase and [[André Joyal]]. CRM Monograph Series \textbf{29} Amer. Math. Soc. 2010. lii+784 pp. (\href{http://www.math.cornell.edu/~maguiar/a.pdf}{pdf draft}) \end{itemize} Other references include: \begin{itemize}% \item G-C. Rota, J. A. Stein, \emph{Plethystic Hopf algebras}, Proc. Nat. Acad. Sci. U.S.A. \textbf{91} (1994), no. 26, 13057--13061, \href{http://www.ams.org/mathscinet-getitem?mr=1306900}{MR96e:16054}, \emph{Plethystic algebras and vector symmetric functions}, Proc. Nat. Acad. Sci. U.S.A. \textbf{91} (1994), no. 26, 13062--13066, \href{http://www.ams.org/mathscinet-getitem?mr=1306901}{MR96e:16055} \item Kurusch Ebrahimi-Fard, \emph{Combinatorial Hopf algebras+, lectures at CIMAT summer school, slides \href{http://www-fourier.ujf-grenoble.fr/~peters/CIMAT/Abstracts/kurusch.pdf}{pdf}} \item F. Hivert, J.-C. Novelli, J.-Y. Thibon, \emph{Trees, functional equations and combinatorial Hopf algebras}, Europ. J. Comb. \textbf{29} (1) (2008), 1682--1695. \item Mercedes H. Rosas, Gian-Carlo Rota, Joel Stein, \emph{A combinatorial overview of the Hopf algebra of MacMahon symmetric functions}, Ann. Comb. \textbf{6} (2002), no. 2, 195--207. \item Bertfried Fauser, \emph{On the Hopf algebraic origin of Wick normal ordering}, J. Phys. A 34 (2001), no. 1, 105--115 \item [[Damien Calaque]], Kurusch Ebrahimi-Fard, Dominique Manchon, \emph{Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series}, Adv. in Appl. Math. \textbf{47} (2011), no. 2, 282--308 \item K. Ebrahimi-Fard, Li Guo, \emph{Mixable shuffles, quasi-shuffles and Hopf algebras}, J. Algebraic Combin. \textbf{24} (2006), no. 1, 83--101, \href{http://www.ams.org/mathscinet-getitem?mr=2245782}{MR2007d:05152},\href{http://dx.doi.org/10.1007/s10801-006-9103-x}{doi} \item K. Ebrahimi-Fard, D. Kreimer, \emph{The Hopf algebra approach to Feynman diagram calculations}, J. Phys. A 38 (2005), no. 50, R385--R407, \href{http://www.ams.org/mathscinet-getitem?mr=2199729}{MR2006k:81266}, \href{http://dx.doi.org/10.1088/0305-4470/38/50/R01}{doi} \item [[Alain Connes]], [[Dirk Kreimer]], \emph{Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem}, Comm. Math. Phys. \textbf{210} (2000), no. 1, 249--273, \href{http://arxiv.org/abs/hep-th/9912092}{hep-th/9912092}, \href{http://www.ams.org/mathscinet-getitem?mr=1748177}{MR2002f:81070}, \href{http://dx.doi.org/10.1007/s002200050779}{doi}, \emph{II. The $\beta$-function, diffeomorphisms and the renormalization group}, Comm. Math. Phys. \textbf{216} (2001), no. 1, 215--241; \href{http://arxiv.org/abs/hep-th/0003188}{hep-th/0003188}, \href{http://www.ams.org/mathscinet-getitem?mr=1748177}{MR2002f:81071}, \href{http://dx.doi.org/10.1007/PL00005547}{doi} \item [[Jean-Louis Loday]] and María O. Ronco. Combinatorial Hopf algebras. \emph{Quanta of maths}, Clay Math. Proc. 11, 347–383, Amer. Math. Soc., Providence, RI, 2010. \href{http://www-irma.u-strasbg.fr/~loday/PAPERS/2011LodayRonco%28CHA%29.pdf}{pdf} \item Bill Schmitt, Hopf algebras of combinatorial structures, Canadian Journal of Mathematics 45 (1993), 412-428. \href{http://home.gwu.edu/~wschmitt/papers/hacs.pdf}{pdf} \item Bill Schmitt, Hopf algebra methods in graph theory, Journal of Pure and Applied Algebra 101 (1995), 77-90. \href{http://home.gwu.edu/~wschmitt/papers/hamgt.pdf}{pdf} \item Bill Schmitt, Incidence Hopf algebras, Journal of Pure and Applied Algebra 96 (1994), 299-330. \href{http://home.gwu.edu/~wschmitt/papers/iha.pdf}{pdf} \end{itemize} See also this nice lecture series on YouTube: \begin{itemize}% \item Federico Ardila, \emph{Hopf algebras and combinatorics}, 30 lectures, \href{http://www.youtube.com/playlist?list=PL-XzhVrXIVeRLeezwY9h4M68k6yB3yOo-}{youtube list}, with \href{http://math.sfsu.edu/federico/Clase/hopfindex.pdf}{index and overview} by Sara Billey. \end{itemize} [[!redirects combinatorial Hopf algebras]] \end{document}