\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{comma category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InComponents}{Via components: the objectwise definition}\dotfill \pageref*{InComponents} \linebreak \noindent\hyperlink{AsAFiberProduct}{Via fiber products in the 1-category Cat}\dotfill \pageref*{AsAFiberProduct} \linebreak \noindent\hyperlink{AsA2Limit}{Via 2-category theory: as a 2-limit}\dotfill \pageref*{AsA2Limit} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{completeness_and_cocompleteness}{Completeness and cocompleteness}\dotfill \pageref*{completeness_and_cocompleteness} \linebreak \noindent\hyperlink{functors_and_comma_categories}{Functors and comma categories}\dotfill \pageref*{functors_and_comma_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{comma category} of two [[functors]] $f : C \to E$ and $g : D \to E$ is a [[category]] like an [[arrow category]] of $E$ where all arrows have their [[source]] in the image of $f$ and their [[target]] in the image of $g$ (and the morphisms between arrows keep track of how these sources and targets are in these images). It can also be seen a kind of [[2-limit]]: a [[directed homotopy theory|directed]] refinement of the [[homotopy pullback]] of two functors between [[groupoids]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We discuss three equivalent definitions of comma categories \begin{itemize}% \item \hyperlink{InComponents}{Explicitly in components} \item \hyperlink{AsAFiberProduct}{As a fiber product} \item \hyperlink{AsA2Limit}{As a 2-limit} \end{itemize} $\backslash$begin\{rmk\} The terminology ``comma category'' is a holdover from the original notation $(f,g)$ for such a category, which generalises $(x,y)$ or $C(x,y)$ for a [[hom-set]]. This is rarely used any more. More common modern notations for the comma category are $(f/g)$, which we will use on this page, and $(f\downarrow g)$. $\backslash$end\{rmk\} \hypertarget{InComponents}{}\subsubsection*{{Via components: the objectwise definition}}\label{InComponents} $\backslash$begin\{defn\} If $f:C\to E$ and $g:D\to E$ are [[functors]], their \textbf{comma category} is the category $(f/g)$ whose \begin{itemize}% \item [[objects]] are triples $(c,d,\alpha)$ where $c\in C$, $d\in D$, and $\alpha:f(c)\to g(d)$ is a morphism in $E$, and whose \item [[morphisms]] from $(c_1,d_1,\alpha_1)$ to $(c_2,d_2,\alpha_2)$ are pairs $(\beta,\gamma)$, where $\beta:c_1\to c_2$ and $\gamma:d_1\to d_2$ are morphisms in $C$ and $D$, respectively, such that $\alpha_2 . f(\beta) = g(\gamma) . \alpha_1$. \end{itemize} \begin{displaymath} \itexarray{ f(c_1) &\stackrel{f(\beta)}{\rightarrow}& f(c_2) \\ \downarrow^{\alpha_1} && \downarrow^{\alpha_2} \\ g(d_1) &\stackrel{g(\gamma)}{\to}& g(d_2) \\ \\ (c_1,d_1, \alpha_1) &\stackrel{(\beta,\gamma)}{\to}& (c_2,d_2, \alpha_2) } \end{displaymath} \begin{itemize}% \item [[composition]] of morphisms is given on components by composition in $C$ and $D$. \end{itemize} $\backslash$end\{defn\} The definition of $(f/g)$ is now complete. In addition, there are two canonical [[forgetful functors]] defined on the comma category: \begin{itemize}% \item there is a functor $H_C\colon (f/g)\rightarrow C$ which sends each object $(c,d,\alpha)$ to $c$, and each pair $(\beta,\gamma)$ to $\beta$. \item there is a functor $H_D\colon (f/g)\rightarrow D$ which sends each object $(c,d,\alpha)$ to $d$, and each pair $(\beta,\gamma)$ to $\gamma$. \end{itemize} Furthermore: \begin{itemize}% \item there is a [[natural transformation]] $\theta : f \circ H_C \to g\circ H_D$ defined by $\theta_{(c,d,\alpha)} = \alpha$. \end{itemize} These functors and natural transformation together give the comma category a 2-categorical universal property; see \hyperlink{AsA2Limit}{this section} for more. \hypertarget{AsAFiberProduct}{}\subsubsection*{{Via fiber products in the 1-category Cat}}\label{AsAFiberProduct} Let $I = \{a \to b\}$ be the (directed) [[interval category]] and $E^I = Funct(I,E)$ the [[functor category]]. The comma category is the [[pullback]] \begin{displaymath} \itexarray{ (f/g) &\to& E^I \\ \downarrow & (pb) & \downarrow^{\mathrlap{(F\mapsto F(a))\times(F\mapsto F(b))}} \\ C \times D &\stackrel{f \times g}{\to}& E \times E } \end{displaymath} in the standard sense of pullback of morphisms in the 1-category [[Cat]] of categories. Compare this with the construction of [[homotopy pullback]] (\href{homotopy+pullback#HomotopyPullbackByFactorizationLemma}{here}), hence with the definition of [[loop space object]] and also with [[generalized universal bundle]]. \hypertarget{AsA2Limit}{}\subsubsection*{{Via 2-category theory: as a 2-limit}}\label{AsA2Limit} The comma category is the [[comma object]] of the [[cospan]] $C\overset{f}{\rightarrow}E\overset{g}{\leftarrow}D$ in the [[2-category]] $Cat$. This means it is an appropriate [[weighted limit|weighted]] 2-categorical [[2-limit|limit]] (in fact, a [[strict 2-limit]]) of the diagram \begin{displaymath} \itexarray{ && C \\ && \downarrow^f \\ D &\stackrel{g}{\to}& E } \end{displaymath} Specifically, it is the universal [[span]] making the following square commute up to a specified [[natural transformation]] (such a universal square is in general called a [[comma square]]): \begin{displaymath} \itexarray{ (f/g) &\overset{H_C}{\to}& C \\ \mathllap{{}^{H_D}} \downarrow &\swArrow& \downarrow^{\mathrlap{f}} \\ D &\stackrel{g}{\to}& E } \end{displaymath} (Sometimes this is called a ``lax pullback'', but that terminology properly refers to something else; see [[comma object]] and [[2-limit]].) Notably, the forgetful functors $H_C$ and $H_D$ from the ``objectwise'' definition are thus recovered via a categorical construction: they are the projections from the summit of the ``appropriate'' 2-categorical limit. In terms of the imagery of [[loop space objects]], the comma category is the category of [[interval object|directed paths]] in $E$ which start in the image of $f$ and end in the image of $g$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $f$ and $g$ are both the identity functor of a category $C$, then $(f/g)$ is the category $C ^{\mathbf{2}}$ of arrows in $C$. \item If $f$ is the identity functor of $C$ and $g$ is the inclusion $1\to C$ of an object $c\in C$, then $(f/g)$ is the [[over category|slice category]] $C/c$. \item Likewise if $g$ is the identity and $f$ is the inclusion of $c$, then $(f/g)$ is the [[under category|coslice category]] $c/C$. \item A [[natural transformation]] $\tau \colon F \to G$ with $F,G :\colon C\to D$ may be regarded as a [[functor]] $T \colon C\to (F/G)$ with $T(c)=(c,c,\tau_c)$ and $T(f)=(f,f)$. Conversely, any such functor $T$ such that the two projections from $(F/G)$ back to $C$ are both [[left inverses]] for $T$ yields a corresponding natural transformation. This is an expression of the universal property of $(F/G)$ as a [[comma object]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{completeness_and_cocompleteness}{}\subsubsection*{{Completeness and cocompleteness}}\label{completeness_and_cocompleteness} If $C$ and $D$ are [[complete category|complete]] and $f: C \to E$ is [[continuous functor|continuous]] and $g: D \to E$ is arbitrary functor (not necessarily continuous) then the comma category $(f/g)$ is complete. Similarly, if $C$ and $D$ are [[cocomplete category|cocomplete]] and $f: C \to E$ is [[cocontinuous functor|cocontinuous]] then $(f/g)$ is cocomplete. For a proof, see \begin{itemize}% \item Rydeheard, David E., and Rod M. Burstall. Computational category theory. Vol. 152. Englewood Cliffs: Prentice Hall, 1988. Section 5.2: colimits in comma categories. \end{itemize} \hypertarget{functors_and_comma_categories}{}\subsubsection*{{Functors and comma categories}}\label{functors_and_comma_categories} \begin{itemize}% \item [[functors and comma categories]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Quillen's theorem A]] \item [[comma object]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Toby Bartels]], \emph{\href{http://tobybartels.name/notes/#comma}{Comma categories}} \end{itemize} [[!redirects comma categories]] \end{document}