\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{commutative algebraic theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstract_formulation}{Abstract formulation}\dotfill \pageref*{abstract_formulation} \linebreak \noindent\hyperlink{commutative_theory_as_monoidal_monad}{Commutative theory as monoidal monad}\dotfill \pageref*{commutative_theory_as_monoidal_monad} \linebreak \noindent\hyperlink{as_commutative_monoid_in_a_duoidal_category}{As commutative monoid in a duoidal category}\dotfill \pageref*{as_commutative_monoid_in_a_duoidal_category} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ClosedMonoidalStructureOnAlgebras}{Closed monoidal structure on algebras}\dotfill \pageref*{ClosedMonoidalStructureOnAlgebras} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{[[algebraic theory]]} is said to be \emph{commutative} if its operations are algebra homomorphisms under any interpretation, generalizing the familiar case of the theory of [[commutative monoid|commutative monoids]]. A more general notion is that of \emph{[[monoidal monads]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Two operations, $\alpha$ and $\beta$, of an [[algebraic theory]] are said to \textbf{commute} if for any [[matrix]] $M$ of elements, with the number of rows given by the arity of $\alpha$ and the number of columns by the arity of $\beta$, one gets the same result whether one \begin{enumerate}% \item applies $\alpha$ to each column of $M$ and then $\beta$ to the resulting row, or \item applies $\beta$ to each row of $M$ and then $\alpha$ to the resulting column. \end{enumerate} (We formulate this notion in an element-free way below.) Note that an operation of arity $0$ or $1$ always commutes with itself; this is not necessarily the case for higher arities. Commuting nullary operations are necessarily equal. The operations that commute with a given set of operations in an algebraic theory form a subtheory. The \textbf{centre} of an algebraic theory is given by the operations that commute with all the operations of the theory. An algebraic theory is \textbf{commutative} if every pair of its operations commute. Another way of describing the centre is to say that it consists of those operations which are also [[homomorphisms]]; an algebraic theory is commutative if all of its operations are homomorphisms. Here is a more formal definition, expressed in terms of structure on the monad $T \colon Set \to Set$ associated with the algebraic theory. \begin{def} \label{}\hypertarget{}{} $T$ is a \emph{[[commutative monad]]} if there is an equality between two maps \begin{displaymath} \alpha = \beta \colon T A \times T B \stackrel{\to}{\to} T(A \times B) \end{displaymath} where \begin{itemize}% \item $\alpha$ is the composite \begin{displaymath} T A \times T B \stackrel{\sigma_{A, T B}}{\to} T(A \times T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \times B) \stackrel{m(A \times B)}{\to} T(A \times B). \end{displaymath} Here $\sigma$ denotes the \emph{strength} of the monad $T$, and $\tau$ its symmetric counterpart. \item $\beta$ is the composite \begin{displaymath} T A \times T B \stackrel{\tau_{T A, B}}{\to} T(T A \times B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \times B) \stackrel{m(A \times B)}{\to} T(A \times B). \end{displaymath} \end{itemize} \end{def} It is worth checking what this description gives more explicitly. Starting with a pair of elements in $T A \times T B$, \begin{displaymath} \langle (\omega; a_1, \ldots, a_m), (\chi; b_1, \ldots, b_n)\rangle \end{displaymath} (and here we should be considering equivalence classes of such formal operations), the map $\alpha$ sends this to \begin{displaymath} (\omega(\chi, \ldots, \chi); (a_1, b_1), \ldots (a_1, b_n)), \ldots, (a_m, b_1), \ldots, (a_m, b_n)) \end{displaymath} where $\omega(\chi, \ldots, \chi)$ is the evident operation of arity $m n = n + \ldots + n$. In more detail, $\alpha(\langle (\omega; \vec{a}), (\chi; \vec{b} \rangle)$ is the end result of the sequence \begin{displaymath} \langle (\omega; \vec{a}), (\chi; \vec{b}) \rangle \stackrel{\sigma}{\mapsto} (\omega; (a_1, (\chi; \vec{b})), \ldots, (a_m, (\chi; \vec{b}))) \stackrel{T\tau}{\mapsto} (\omega; (\chi; (a_1, \vec{b})), \ldots, (\chi; (a_m, \vec{b}))) \stackrel{m}{\mapsto} (\omega(\chi, \ldots, \chi); (a_1, \vec{b}), \ldots, (a_m, \vec{b})). \end{displaymath} Similarly, the map $\beta$ sends the pair $\langle (\omega; \vec{a}), (\chi; \vec{b}) \rangle$ to \begin{displaymath} (\chi(\omega, \ldots, \omega); (\vec{a}, b_1), \ldots, (\vec{a}, b_n)) \end{displaymath} where $\chi(\omega, \ldots, \omega)$ is the evident operation of arity $n m = m + \ldots + m$. \hypertarget{abstract_formulation}{}\subsubsection*{{Abstract formulation}}\label{abstract_formulation} The category $\mathbf{Th}$ of Lawvere theories is endowed with a symmetric monoidal product (called \emph{[[tensor product theory|Kronecker product]]}; see Freyd's article in the references), \begin{displaymath} \otimes \colon \mathbf{Th} \times \mathbf{Th} \to \mathbf{Th}, \end{displaymath} whereby $(S \otimes T)$-algebras are $S$-algebras internal to $T$-algebras, or equally well $T$-algebras internal to $S$-algebras. A commutative theory is tantamount to a commutative monoid in the symmetric monoidal category $\mathbf{Th}$. If $S$ and $T$ are commutative theories, then their coproduct in the category of commutative theories is $S \otimes T$. \hypertarget{commutative_theory_as_monoidal_monad}{}\subsubsection*{{Commutative theory as monoidal monad}}\label{commutative_theory_as_monoidal_monad} Let $T$ be the $Set$-monad of a commutative theory. Then the map \begin{displaymath} \alpha_{A, B}: T A \times T B \to T(A \times B) \end{displaymath} as defined above can be shown to be the structure map for a monoidal structure on $T$, i.e., making $T$ a lax (symmetric) monoidal functor, and in fact the monad multiplication and unit become monoidal transformations. In other words, we get a monad in the 2-category of symmetric monoidal categories, lax symmetric monoidal functors, and monoidal transformations: a [[monoidal monad]]. In fact, it may be shown that commutative Lawvere theories on $Set$ are precisely the same things as (finitary) symmetric monoidal monad structures on $(Set, \times)$, as shown by Anders Kock. For more on this, see [[monoidal monad]]. \hypertarget{as_commutative_monoid_in_a_duoidal_category}{}\subsubsection*{{As commutative monoid in a duoidal category}}\label{as_commutative_monoid_in_a_duoidal_category} The commutativity of a theory can also be expressed as an abstract property of a monoid in a [[duoidal category]], specialized to the duoidal category of finitary endofunctors. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ClosedMonoidalStructureOnAlgebras}{}\subsubsection*{{Closed monoidal structure on algebras}}\label{ClosedMonoidalStructureOnAlgebras} We discuss that the category of [[algebras for an algebraic theory]] over a commutative algebraic theory is canonically a [[closed monoidal category|closed]] [[symmetric monoidal category]] (\hyperlink{Keigher78}{Keigher 78}, \hyperlink{Seal12}{Seal 12}). If $f_1,\ldots , f_n$ are homomorphisms $A \to B$ of models (algebras) of a commutative algebraic theory, and $\omega$ is an $n$-ary operation of it, then the function $A \to B$ given by sending $a \in A$ to $\omega(f_1(a),\ldots ,f_n(a)) \in B$ is again a homomorphism, which is naturally called $\omega(f_1,\ldots ,f_n)$. In this way $Hom(A,B)$ is enriched as a model of the algebraic theory, and we have a [[closed category]] of models and homorphisms. Furthermore, this [[internal hom|internal]] $Hom$ has a [[left adjoint]] $\otimes$ for which the free model on one generator is a unit, so we have a [[closed monoidal category]], in fact a closed [[symmetric monoidal category]]. The monoidal structure $\otimes$ can be extracted by a straightforward generalization of the usual [[tensor product of abelian groups]] (or of [[commutative monoids]]), where ``[[bilinear map|bilinearity]] conditions'' = ``linearity in separate variables'' is replaced by ``$T$-homomorphicity in separate variables'', where $T$ is the [[monad]] of the algebraic theory. In slightly more detail, if $A$ and $B$ are $T$-algebras, the tensor product $A \otimes B$ ought to be $T(A \times B)$ modulo equivalences which we may write suggestively as \begin{displaymath} \omega(a_1, \ldots, a_m) \otimes \chi(b_1, \ldots, b_n) \sim (\omega(\chi, \ldots, \chi); a_1 \otimes b_1, \ldots, a_m \otimes b_n) \end{displaymath} where the left side is represented by a composite \begin{displaymath} T A \times T B \stackrel{\xi_A \times \xi_B}{\to} A \times B \stackrel{u(A \times B)}{\to} T(A \times B) \end{displaymath} (the $\xi$`s are $T$-algebra structures), and the right side by the monoidal structure map on $T$, \begin{displaymath} \alpha_{A, B} \colon T A \times T B \to T(A \times B). \end{displaymath} In more detail still, $A \otimes B$ is the following [[coequalizer]] in $Alg_T$: \begin{displaymath} \itexarray{ T(T A \times T B) & \stackrel{T\alpha}{\to} & T T(A \times B) & \\ & ^\mathllap{T(\xi_A \times \xi_B)} \searrow & \downarrow^\mathrlap{m} & \\ & & T(A \times B) & \to & A \otimes B } \end{displaymath} (\hyperlink{Seal12}{Seal 12, section 2.2 and theorem 2.5.5}) This construction carries over to the wider context of monoidal monads. \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of commutative algebraic theory was formulated in terms of [[monads]] by [[Anders Kock]]. \begin{itemize}% \item [[Anders Kock]], \emph{Monads on symmetric monoidal closed categories}, Arch. Math. 21 (1970), 1--10. \end{itemize} The [[closed category]]-structure on the EM-category of monoidal monads was studied in \begin{itemize}% \item [[Anders Kock]], \emph{Strong functors and monoidal monads}, Arhus Universitet, Various Publications Series No. 11 (1970). \href{http://home.imf.au.dk/kock/SFMM.pdf}{PDF}. \item [[Anders Kock]], \emph{Closed categories generated by commutative monads} ([[KockMonoidalMonads.pdf:file]]) \end{itemize} and the [[monoidal category]]-structure in \begin{itemize}% \item [[William Keigher]], \emph{Symmetric monoidal closed categories generated by commutative adjoint monads}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 19 no. 3 (1978), p. 269-293 (\href{http://www.numdam.org/numdam-bin/fitem?id=CTGDC_1978__19_3_269_0}{NUMDAM}, \href{http://archive.numdam.org/article/CTGDC_1978__19_3_269_0.pdf}{pdf}) \item Gavin J. Seal, \emph{Tensors, monads and actions} (\href{http://arxiv.org/abs/1205.0101}{arXiv:1205.0101}) \end{itemize} There is \href{http://mathoverflow.net/a/75929/381}{related MO discussion}. The Kronecker product of theories was introduced in an article of Freyd: \begin{itemize}% \item [[Peter Freyd]], \emph{Algebra valued functors in general and tensor products in particular}, Colloq. Math. 14 (1966), 89-106. \end{itemize} Recently [[Nikolai Durov]] rediscovered that notion for the purposes of geometry (under the name \textbf{commutative algebraic monad}), constructed their spectra (generalizing the [[spectrum (geometry)|spectrum]] of Grothendieck) and theory of [[generalized scheme after Durov|generalized schemes on this basis]]. There is a generalized version of the [[Eckmann–Hilton argument]] concerning commutative finitary monads. Much detail including many examples and further constructions are in his thesis \begin{itemize}% \item [[Nikolai Durov]], \emph{New approach to Arakelov geometry}, \href{http://arXiv.org/abs/0704.2030}{arXiv:0704.2030} \end{itemize} [[!redirects commutative algebraic theories]] [[!redirects commutative theory]] [[!redirects commutative theories]] [[!redirects commutative monad]] [[!redirects commutative algebraic monad]] [[!redirects commutative monads]] [[!redirects commutative algebraic monads]] \end{document}