\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{commutativity of limits and colimits} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{preservation_by_functor_categories_and_localizations}{Preservation by functor categories and localizations}\dotfill \pageref*{preservation_by_functor_categories_and_localizations} \linebreak \noindent\hyperlink{FilteredColimitsCommuteWithFiniteLimits}{Filtered colimits commute with finite limits}\dotfill \pageref*{FilteredColimitsCommuteWithFiniteLimits} \linebreak \noindent\hyperlink{SiftedColimitsCommuteWithFiniteProducts}{Sifted colimits commute with finite products}\dotfill \pageref*{SiftedColimitsCommuteWithFiniteProducts} \linebreak \noindent\hyperlink{taking_orbits_under_the_action_of_a_finite_group_commutes_with_cofiltered_limits}{Taking orbits under the action of a finite group commutes with cofiltered limits}\dotfill \pageref*{taking_orbits_under_the_action_of_a_finite_group_commutes_with_cofiltered_limits} \linebreak \noindent\hyperlink{coproducts_commute_with_connected_limits}{Coproducts commute with connected limits}\dotfill \pageref*{coproducts_commute_with_connected_limits} \linebreak \noindent\hyperlink{classes_of_limits_and_sound_doctrines}{Classes of limits and sound doctrines}\dotfill \pageref*{classes_of_limits_and_sound_doctrines} \linebreak \noindent\hyperlink{ColimitsStableByBaseChange}{Relation to stability under base change}\dotfill \pageref*{ColimitsStableByBaseChange} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In general, [[limit]]s and [[colimit]]s do not commute. It is therefore of interest to list the special conditions under which certain limits do commute with certain colimits. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ and $D$ be (usually [[small category|small]]) categories, and $E$ a category that has both $C$-colimits and $D$-limits. Then for any functor $F \colon C \times D \to E$, there is a canonical morphism \begin{equation} colim_C lim_D F \to lim_D colim_C F. \label{FormulaForCommutativityOfLimitsOverColimits}\end{equation} We say that \textbf{$C$-colimits commute with $D$-limits in $E$} if this is an [[isomorphism]] for all such $F$. This is equivalent to both of the statements: \begin{itemize}% \item The functor $colim_C : [C,E] \to E$ [[preserved limit|preserves]] (i.e. ``commutes with'') $D$-limits. \item The functor $lim_D : [D,E] \to E$ preserves $C$-colimits. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{preservation_by_functor_categories_and_localizations}{}\subsubsection*{{Preservation by functor categories and localizations}}\label{preservation_by_functor_categories_and_localizations} If $C$-colimits commute with $D$-limits in $E$, then the same is true in any [[functor category]] $[J,E]$, since limits and colimits in the latter are both pointwise in $E$. Also, if $C$-colimits commute with $D$-limits in $E$, and if $E'$ is a [[reflective subcategory]] of $E$ with a reflector $L$ that preserves $D$-limits, then $C$-colimits also commute with $D$-limits in $E'$. This follows because the functor $colim_C : [C,E'] \to E'$ factors as the composite $[C,E'] \hookrightarrow [C,E] \xrightarrow{colim_C} E \xrightarrow{L} E'$ in which all three functors preserve $D$-limits. \hypertarget{FilteredColimitsCommuteWithFiniteLimits}{}\subsubsection*{{Filtered colimits commute with finite limits}}\label{FilteredColimitsCommuteWithFiniteLimits} In $Set$, [[filtered category|filtered]] colimits commute with finite limits. In fact, $C$ is a [[filtered category]] \emph{if and only if} $C$-colimits commute with finite limits in $Set$. More generally, filtered colimits commute with [[L-finite category|L-finite]] limits. By the above remarks, it follows that filtered colimits commute with finite limits in any [[Grothendieck topos]]. \hypertarget{SiftedColimitsCommuteWithFiniteProducts}{}\subsubsection*{{Sifted colimits commute with finite products}}\label{SiftedColimitsCommuteWithFiniteProducts} Again in [[Set]] (and hence also in any [[topos]]), [[sifted category|sifted colimits]] commute with [[finite products]]. In fact, this is usually taken to be the definition of a [[sifted category]], and then a theorem of \href{sifted+colimit#GabrielUlmer71}{Gabriel-Ulmer 71} characterizes sifted categories as those for which the [[diagonal functor]] $C \to C \times C$ is a [[final functor]]. As a special case, [[categories with finite products are cosifted]]. For more on this see at \emph{[[distributivity of products and colimits]]}. \hypertarget{taking_orbits_under_the_action_of_a_finite_group_commutes_with_cofiltered_limits}{}\subsubsection*{{Taking orbits under the action of a finite group commutes with cofiltered limits}}\label{taking_orbits_under_the_action_of_a_finite_group_commutes_with_cofiltered_limits} This means that if $G$ is a finite group, $C$ is a small cofiltered category and $F : C \to G Set$ is a functor, the canonical map \begin{displaymath} (\lim F)/G \to \lim_{j \in F} (F(j)/G) \end{displaymath} is an isomorphism. This fact is mentioned by Andr\'e{} Joyal in \emph{Foncteurs analytiques et esp\`e{}ces de structures}; a proof can be found \href{http://www.matem.unam.mx/~omar/notes/fingrpcomm.html}{here}. \hypertarget{coproducts_commute_with_connected_limits}{}\subsubsection*{{Coproducts commute with connected limits}}\label{coproducts_commute_with_connected_limits} \begin{example} \label{CoproductsCommutingWithConnectedLimits}\hypertarget{CoproductsCommutingWithConnectedLimits}{} Let $A$ be a [[set]], $C$ a [[connected category]], and $F \colon C\times A \longrightarrow Set$ a [[functor]]. Then the canonical morphism \begin{displaymath} \underset{a\in A}{\coprod} \underset{\longleftarrow}{\lim}_{c\in C} F(c,a) \longrightarrow \underset{\longleftarrow}{\lim}_{c\in C} \coprod_{a\in A}F(c,a) \end{displaymath} is an [[isomorphism]]. This remains true if [[Set]] is replaced by any [[Grothendieck topos]]. \end{example} More generally, if $\mathbf{H}$ is an [[(∞,1)-topos]], $A$ is an [[n-groupoid]], and $C$ is a small [[(∞,1)-category]] whose [[classifying space]] is [[n-connected]], then $C$-limits commute with $A$-colimits in $\mathbf{H}$. This follows from the fact that the colimit functor $\mathbf{H}^A\to\mathbf{H}$ induces an equivalence of (∞,1)-topoi $\mathbf{H}^A\simeq \mathbf{H}_{/A}$. For example, if $C$ is a [[cofiltered (∞,1)-category]] or even a [[cosifted (∞,1)-category]], then the classifying space of $C$ is weakly contractible and hence $C$-limits commute with $A$-colimits in $\mathbf{H}$ for any [[∞-groupoid]] $A$. \hypertarget{classes_of_limits_and_sound_doctrines}{}\subsubsection*{{Classes of limits and sound doctrines}}\label{classes_of_limits_and_sound_doctrines} In general, for any class of limits $\Phi$, one may consider the class of all colimits that commute with $\Phi$-limits and dually. These classes of limits and colimits share many of the properties of the above examples, especially when $\Phi$ is a [[sound doctrine]]. \hypertarget{ColimitsStableByBaseChange}{}\subsection*{{Relation to stability under base change}}\label{ColimitsStableByBaseChange} Stability of a colimit under pullback looks informally like a ``commutativity'' condition between colimits and pullbacks, but it is not actually in general an instance of the general notion of commutativity of limits and colimits, though it is an instance of [[distributivity of limits over colimits]]. See also [[pullback-stable colimit]] for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[distributivity of limits over colimits]] \item [[pullback-stable colimit]] \end{itemize} [[!redirects commutativity of limits and colimits]] [[!redirects commutativity of limits with colimits]] [[!redirects commutativity of a limit with a colimit]] [[!redirects commutativity of limits over colimits]] [[!redirects commutativity of a limit over a colimit]] [[!redirects commutativity of colimits and limits]] [[!redirects commutativity of colimits with limits]] [[!redirects commutativity of a colimit with a limit]] [[!redirects limits commuting with colimits]] \end{document}