\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{comonadic functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{comonadic_adjoints_to_monadic_functors}{Comonadic adjoints to monadic functors}\dotfill \pageref*{comonadic_adjoints_to_monadic_functors} \linebreak \noindent\hyperlink{Necessity}{Necessity}\dotfill \pageref*{Necessity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of a \emph{comonadic functor} is the dual of that of a [[monadic functor]]. See there for more background. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a pair $L\dashv R$ of [[adjoint functors]], $L\colon A \to B\colon R$, with [[counit of an adjunction|counit]] $\epsilon$ and [[unit of an adjunction|unit]] $\eta$, one forms a [[comonad]] $\mathbf{\Omega} = (\Omega, \delta, \epsilon)$ by $\Omega \coloneqq L \circ R$, $\delta \coloneqq L \eta R$. $\mathbf{\Omega}$-\href{comonad#coalgebras}{comodules} (aka $\mathbf{\Omega}$-coalgebras) form a category $B_{\mathbf{\Omega}}$ and there is a natural comparison functor $K = K_{\mathbf{\Omega}}\colon A \to B_{\mathbf{\Omega}}$ given by $A \mapsto (L A, L A \stackrel{L(\eta_A)}\to L R L A)$. A functor $L\colon A\to B$ is \textbf{comonadic} if it has a [[right adjoint]] $R$ and the corresponding comparison functor $K$ is an [[equivalence of categories]]. The adjunction $L \dashv R$ is said to be a \textbf{comonadic adjunction}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Beck's [[monadicity theorem]] has its dual, comonadic analogue. To discuss it, observe that for every $\Omega$-comodule $(N, \rho)$, manifestly exhibits a [[split equalizer]] sequence. \ldots{} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{comonadic_adjoints_to_monadic_functors}{}\subsubsection*{{Comonadic adjoints to monadic functors}}\label{comonadic_adjoints_to_monadic_functors} If $T: Set \to Set$ is a monad on $Set$, with corresponding monadic functor $U: Set^T \to Set$, then the left adjoint $F: Set \to Set^T$ is comonadic provided that $F(!): F(0) \to F(1)$ is a [[regular monomorphism]] and not an [[isomorphism]]. In particular, if $T$ is given by an [[algebraic theory]] with at least one constant symbol and at least one function symbol of arity greater than zero, then the left adjoint is comonadic (because then $F(!): F(0) \to F(1)$ is a split monomorphism but not an isomorphism). More generally, let $A$ be a [[locally small category]] with small [[copower|copowers]], and suppose $a$ is an object such that $0 \to a$ is a regular monomorphism but not an isomorphism, then the copowering with $a$, \begin{displaymath} - \cdot a: Set \to A \end{displaymath} (left adjoint to $A(a, -): A \to Set$) is comonadic. See proposition 6.13 and related results in this \href{http://www.tac.mta.ca/tac/volumes/16/1/16-01abs.html}{paper} by Mesablishvili. \hypertarget{Necessity}{}\subsubsection*{{Necessity}}\label{Necessity} In the context of the treatment of [[modal operators]] given at \emph{\href{necessity+and+possibility#InFirstOrderLogicAndTypeTheory}{Possible worlds via first-order logic and type theory}}, we find that [[base change]] along the terminal morphism from the type of worlds, $W$, and its [[right adjoint]], [[dependent product]], form a comonadic adjunction. $W^{\ast} \dashv \prod_W$. Let $\mathbf{H}$ be a [[topos]]. For a [[type]]/[[object]], $P$, in $\mathbf{H} \simeq \mathbf{H}_{/\ast}$ we have that \begin{displaymath} W^{\ast} (P) = P \times W \to W \end{displaymath} ([[projection]] on the second component). And for $[Q \to W]$ in $\mathbf{H}_{/W}$, we have \begin{displaymath} \prod_W (Q) = \Gamma_W(Q) \end{displaymath} ([[space of sections]]). Hence the composite, a kind of [[necessity]] operator \begin{displaymath} \Box_W \colon \mathbf{H}_{/W}\stackrel{\prod_W}{\longrightarrow} \mathbf{H} \stackrel{W^\ast}{\longrightarrow} \mathbf{H}_{/W} \end{displaymath} (an analog of the [[jet comonad]]), sends $Q \to W$ to $\Gamma_W(Q) \times W \to W$. If $W$ is an [[inhabited object]] so that $W \to \ast$ is an [[epimorphism]], then $W^\ast$ is a [[conservative functor]]. Since it moreover preserves all [[limits]] (having a further [[left adjoint]], the [[dependent sum]] operation) the [[monadicity theorem]] applies and says that the coalgebras for this comonad are the types in $\mathbf{H}$, or rather the types in $\mathbf{H}_{/W}$ which are in the image of $W^{\ast}$, hence of the form $P \times W$, and equipped with the map \begin{displaymath} (const, id) \;\colon\; P \times W \longrightarrow \Box_W (P \times W) \simeq P^W \times W \end{displaymath} over $W$ ($P^W$ denotes the [[internal hom]]), where the first component of the map sends $p: P$ to the constant map at $p$. To see this as an [[equalizer]], consider the two maps from $\Box_W (P \times W \to W)$ to $\Box_W \Box_W (P \times W \to W)$. Over $W$, these are formed from the two ways of mapping $P^W$ to $P^{(W \times W)}$, by sending $f$ in $P^W$ to $g \colon (w, w') \mapsto f(w)$ and to $h \colon (w, w') \mapsto f(w')$. The equalizer of these two maps is formed from the $f$ for which $g = h$ for all $w, w'$ in $W$, that is, when $f$ is constant. So the equalizer is equivalent to $W^{\ast} P = P \times W \to W$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monadic functor]], \textbf{comonadic functor} \item [[monadicity theorem]] \end{itemize} [[!redirects comonadic functor]] [[!redirects comonadic functors]] [[!redirects comonadicity theorem]] [[!redirects comonadic adjunction]] [[!redirects comonadic adjunctions]] \end{document}