\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{compact Hausdorff rings are profinite} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{compact_rings_are_totally_disconnected}{Compact rings are totally disconnected}\dotfill \pageref*{compact_rings_are_totally_disconnected} \linebreak \noindent\hyperlink{compact_rings_have_enough_open_ideals}{Compact rings have enough open ideals}\dotfill \pageref*{compact_rings_have_enough_open_ideals} \linebreak \noindent\hyperlink{compact_rings_are_profinite}{Compact rings are profinite}\dotfill \pageref*{compact_rings_are_profinite} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} The goal of this article is to prove that a [[compactum|compact Hausdorff]] [[ring]] $R$ is a [[profinite space|profinite]] ring, i.e., is canonically isomorphic as a [[topological ring]] to its [[profinite completion]] $\widehat{R}$, topologized as an inverse limit of [[finite set|finite]] rings with their [[discrete topology|discrete topologies]]. Further commentary on this result can be found in a Caf\'e{} \hyperlink{Lein}{blog post} of Tom Leinster, in connection with some work by his student Barry Devlin. \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} All topological rings considered are $T_0$ (see [[separation axiom]]). As is well-known from the study of [[uniform structures]], this implies that all our rings are [[Hausdorff space|Hausdorff]] and even [[Tychonoff spaces]]. In particular, finite rings are Hausdorff and therefore discrete. If $S$ is a finite ring and $f: R \to S$ is a [[continuous map|continuous]] ring homomorphism, this means the [[kernel]] of $f$ must be an [[open set|open]] [[ideal]] of $R$ (for us, ``ideal'' always means two-sided ideal), since $\{0\}$ is open in $S$. In the converse direction, if $R$ is a compact ring and $I$ is an open ideal, then the ring $R/I$ with the [[quotient topology]] coming from $R$ is discrete (every point is open), and compact since $R$ is compact, and so $R/I$ must then be finite. Let $\mathcal{O}(R)$ denote the [[poset]] of open ideals of $R$, ordered by [[subset|inclusion]]. This poset is [[directed set|codirected]] by taking finite [[intersections]] of ideals. Each inclusion $I \subseteq J$ induces a [[surjection]] of finite rings $R/I \to R/J$, and so we get a [[functor]] $\mathcal{O}(R) \to Ring$ whose (projective) [[limit]] is the profinite completion $\widehat{R}$ of $R$; the quotient maps $proj_I: R \to R/I$ of course induce a canonical map $\pi: R \to \widehat{R}$. \begin{prop} \label{surj}\hypertarget{surj}{} The map $\pi: R \to \widehat{R}$ is surjective. \end{prop} \begin{proof} Since $R$ is compact and $\widehat{R}$ is Hausdorff, the image $\pi(R)$ is closed in $\widehat{R}$, so it suffices to show the image is a [[dense subspace]]. So, we are to show that if $U \subseteq \widehat{R}$ is open and [[inhabited set|inhabited]], then there exists $x \in R$ with $\pi(x) \in U$. Let $\pi_I: \widehat{R} \to R/I$ denote a typical component map of the limit cone. A [[basis of a topology|basis]] for the topology of $\widehat{R}$ consists of inhabited finite intersections of the form $U = \pi_{I_1}^{-1}(x_1) \cap \ldots \cap \pi_{I_n}^{-1}(x_n)$ where each $x_k$ is a point of $R/I_k$, so WLOG assume $U$ is of this form. Let $y = \langle y_I \rangle_{I \in \mathcal{O}(R)} \in \widehat{R}$ be any point belonging to $U$ (so $y_{I_i} = x_i$ for $i = 1, \ldots, n$), and put $J = \bigcap_{i=1}^n I_i$. Then for each $x_i$ the coordinate $y_J$ maps to $x_i$ under the map $R/J \to R/I_i$, precisely because of the compatibility conditions on the coordinates imposed by the limit. Then, letting $y' \in R$ be an element that maps to $y_J$ under $R \to R/J$, the element $\pi(y')$ lies in $U$ and we are done. \end{proof} \hypertarget{compact_rings_are_totally_disconnected}{}\subsection*{{Compact rings are totally disconnected}}\label{compact_rings_are_totally_disconnected} A key technical result is the following (see this $n$-Category Caf\'e{} \hyperlink{Trim}{comment}): \begin{theorem} \label{totdisc}\hypertarget{totdisc}{} Every compact Hausdorff ring $R$ is [[connected space|totally disconnected]]. \end{theorem} \begin{proof} Let $R^\ast$ be the [[Pontryagin duality|Pontryagin dual]] of (the additive group of) $R$; as a space $R^\ast$ is discrete. As $R$ and $R^\ast$ are [[locally compact Hausdorff space|locally compact Hausdorff]], they are [[exponentiable space|exponentiable]] as spaces, and it follows quickly that the functorial maps \begin{displaymath} Hom(R, R) \to Hom(R^\ast, R^\ast), \qquad Hom(R^\ast, R^\ast) \to Hom(R^{\ast\ast}, R^{\ast\ast}) \cong Hom(R, R) \end{displaymath} are continuous homomorphisms of topological groups. Using naturality of the isomorphism $R \cong R^{\ast\ast}$, these maps are mutually inverse, and so they give an [[isomorphism]] of topological groups. The multiplication map $R \times R \to R$ [[currying|transforms]] to a continuous injection $i: R \to Hom(R, R) \cong Hom(R^\ast, R^\ast)$. As $R$ is compact and $Hom(R^\ast, R^\ast)$ is Hausdorff, the injection $i$ maps $R$ homeomorphically onto its image in $Hom(R^\ast, R^\ast)$, i.e., is a subspace embedding. But $Hom(R^\ast, R^\ast)$ is manifestly a subspace of a product of discrete spaces and hence totally disconnected, so $R$ is totally disconnected as well. (In more detail: if $C \subseteq R$ is connected, then the image of $C$ under the composite \begin{displaymath} C \subseteq R \stackrel{i}{\to} Hom(R^\ast, R^\ast) \hookrightarrow \prod_{x \in R^\ast} R^\ast \stackrel{proj_x}{\;\;\to\;\;} R^\ast \end{displaymath} is also connected and hence a one-point space for each $x \in R^\ast$, so that $i(C)$ and therefore $C$ are one-point spaces.) \end{proof} \hypertarget{compact_rings_have_enough_open_ideals}{}\subsection*{{Compact rings have enough open ideals}}\label{compact_rings_have_enough_open_ideals} By Theorem \ref{totdisc}, Pontryagin duality implies compact rings are totally disconnected, which readies us for a next wave of results. \begin{lemma} \label{compopen}\hypertarget{compopen}{} Let $X$ be a compact Hausdorff totally disconnected space. For each $x \in X$ and open neighborhood $V$ of $x$, there exists a compact open set $U$ such that $x \in U \subseteq V$. \end{lemma} \begin{proof} In a compact Hausdorff space $X$, the \href{/nlab/show/connected+space#connected_components}{connected component} of a point $x$ equals its quasi-component; an online proof may be found \href{http://math.stackexchange.com/a/11423/43208}{here}. So if $X$ is also totally disconnected, then $x$ is also the intersection of all [[clopen set|clopens]] containing it. Now let $V$ be an open [[neighborhood]] of $x$, so $\bigcap_{x \in K\; clopen} K \subseteq V$ and therefore $\neg V \subseteq \bigcup_{x \in K\; clopen} \neg K$. As $\neg V$ is compact, finitely many such clopens $\neg K_1, \ldots, \neg K_n$ cover $\neg V$, and so $U \coloneqq \bigcap_{i=1}^n K_n \subseteq V$. This $U$ is compact and open and contains $x$, which completes the proof. \end{proof} \begin{lemma} \label{opengroup}\hypertarget{opengroup}{} Let $A$ be a compact Hausdorff totally disconnected abelian group. For each open neighborhood $V$ of $0 \in A$, there exists an open subgroup $O$ such that $O \subseteq V$. \end{lemma} \begin{proof} By Lemma \ref{compopen}, there is a compact open $W$ with $0 \in W \subseteq V$. Now let $\alpha: W \times W \to A$ be the restriction of the addition operation $+: A \times A \to A$. Since $\alpha$ is continuous, there is for each $x \in W$ an open neighborhood $V_x \times U_x \subseteq \alpha^{-1}(W)$ of $(x, 0)$ where we may assume $U_x$ is \emph{symmetric} (i.e., $U_x = -U_x$). Finitely many of the $V_x$ cover $W$, say $V_{x_1}, \ldots, V_{x_n}$. Then putting $U = U_{x_1} \cap \ldots \cap U_{x_n}$, we have that $\alpha(W \times U) \subseteq W$, or $W + U \subseteq W$ for short. This $U$ is again symmetric: $U = -U$. Hence if $U^n = U + \ldots + U$ denotes the set of all sums of $n$ elements belonging to $U$, then $U^n$ is open and $W + U^n \subseteq W$ by induction, whence $U^n \subseteq W$. Since $U$ is symmetric, the union $O = \bigcup_n U^n$ is the subgroup generated by $U$; it is open and contained in $W$ and therefore also in $V$, which completes the proof. \end{proof} \begin{lemma} \label{openideal}\hypertarget{openideal}{} Let $R$ be a compact Hausdorff totally disconnected ring. For each open neighborhood $V$ of $0$, there is an open ideal $I$ such that $I \subseteq V$. \end{lemma} \begin{proof} By Lemma \ref{opengroup}, there is an open additive subgroup $O \subseteq V$. Let $I = \{x \in R: R x R \subseteq O\}$. It is evident that $0 \in I$ and $I$ is an ideal of $R$. Now hold $x \in I$ fixed. For each $(a, b) \in R \times R$, continuity of multiplication implies there are open neighborhoods $W_{(a, b)}$ of $a$, $W_{(a, b)}'$ of $b$, and $V_{(a, b)}$ of $x$ such that $W_{(a, b)} V_{(a, b)} W_{(a, b)}' \subseteq O$. By compactness of $R \times R$, finitely many sets of the form $W_{(a, b)} \times W_{(a, b)}'$ cover $R \times R$. The corresponding finite intersection $\bigcap_{i=1}^n V_{(a_i, b_i)}$ is an open neighborhood of $x$ that is contained in $I$, thus completing the proof. \end{proof} \hypertarget{compact_rings_are_profinite}{}\subsection*{{Compact rings are profinite}}\label{compact_rings_are_profinite} Now for our final result. \begin{theorem} \label{}\hypertarget{}{} For $R$ a compact ring, the canonical map $\pi: R \to \widehat{R}$ is [[monomorphism|injective]]. \end{theorem} This and Proposition \ref{surj} taken together imply that $\pi$ is a ring isomorphism. It is also a [[homeomorphism]] because it is a continuous [[bijection|bijective]] map from a compact space to a Hausdorff space. Therefore $\pi$ is an isomorphism of topological rings. \begin{proof} As we have an inclusion $\widehat{R} \hookrightarrow \prod_{I \in \mathcal{O}(R)} R/I$ of the profinite completion as projective limit, we see the kernel of $\pi$ is the same as the kernel of \begin{displaymath} \langle proj_I \rangle_{I \in \mathcal{O}(R)}: R \to \prod_{I \in \mathcal{O}(R)} R/I \end{displaymath} which is precisely $\bigcap_{I \in \mathcal{O}(R)} I$. Since by Lemma \ref{openideal} every neighborhood of $0 \in R$ contains an open ideal $I \in \mathcal{O}(R)$, this intersection is contained in the intersection of all open neighborhoods of $0$, which is $\{0\}$ since $R$ is Hausdorff. Thus the kernel of $\pi$ is trivial, as was to be shown. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[profinite group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Tom Leinster]], \emph{Holy Crap, Do You Know What A Compact Ring Is?}, blog post, $n$-Category Caf\'e{} (August 20, 2014). (\href{https://golem.ph.utexas.edu/category/2014/08/holy_crap_do_you_know_what_a_c.html}{link}) \end{itemize} \begin{itemize}% \item [[Todd Trimble]], comment on \emph{Holy Crap, Do You Know What A Compact Ring Is?}, blog post, $n$-Category Caf\'e{} (August 24, 2014). (\href{https://golem.ph.utexas.edu/category/2014/08/holy_crap_do_you_know_what_a_c.html#c047108}{link}) \end{itemize} \begin{itemize}% \item L. Ribes and P. Zalesskii, \emph{Profinite groups}, volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (2000), Springer-Verlag, Berlin. \end{itemize} \end{document}