\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{compact double category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] [[Mike Shulman]]: Original research alert. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{extraordinary_2cells}{Extraordinary 2-cells}\dotfill \pageref*{extraordinary_2cells} \linebreak \noindent\hyperlink{structures_in_a_compact_double_category}{Structures in a compact double category}\dotfill \pageref*{structures_in_a_compact_double_category} \linebreak \noindent\hyperlink{representability}{Representability}\dotfill \pageref*{representability} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{compact double category} is a (usually pseudo) [[double category]] which is [[monoidal double category|symmetric monoidal]], and in which every object has an assigned [[dualizable object|dual]] in the ``proarrow'' direction (as in a [[compact closed category]]). The basic example is the double category $\underline{Cat}$ of categories, functors, and [[profunctors]], in which the dual of a category is its [[opposite category]]. On this page, we will draw the ``functor'' direction horizontally and the ``profunctor'' direction vertically. Thus, in a compact double category, every object has a vertical dual. Note that if a compact double category is a [[proarrow equipment]], then its [[vertical bicategory]] is a [[symmetric monoidal bicategory]], which is moreover an [[autonomous bicategory]]. However, saying that a double category is compact says more than this: it says that the vertical duals are assigned in a horizontally functorial way. Just as duals in a monoidal category are characterized up to isomorphism, duals in an autonomous bicategory are characterized up to equivalence, which in this case would mean \emph{vertical} equivalence. But equivalence in the bicategory $Prof$ of categories and profunctors is a weaker notion than [[equivalence of categories]], so just saying that $C^{op}$ is a dual of $C$ in $Prof$ does not characterize $C^{op}$ up to equivalence, only up to [[Morita equivalence]] (i.e. equivalence of [[Cauchy completion]]s). The extra structure (not merely extra properties) of the compact double category $\underline{Cat}$ includes the specification of $C^{op}$ up to equivalence (i.e., horizontal equivalence), along with all the attendant structure. Likewise, a \textbf{compact virtual double category} is a [[virtual double category]] which is compact in a similar sense: it has a monoidal structure and functorially assigned duals. Note that in order to match with our conventions on this page, the role of vertical and horizontal cells in a virtual double category is flipped from the choices made at [[virtual double category]], and the cells must be transposed and have their multi-sources on the left, rather than the top. By contrast, in a \textbf{virtually compact virtual double category}, the monoidal and compact structure has also been ``virtualized'': rather than coming equipped with a horizontally functorial tensor product, in such a virtual double category there are also horizontal arrows with multi-sources that are finite lists of objects with variance, such as $(A,B^{op},C)$. We can also have a \textbf{virtually compact double category} which is an honest double category, but whose monoidal and compact structure is only virtual. Finally, if a compact double category or virtual category is a [[proarrow equipment]] or a [[virtual equipment]], we of course call it a \textbf{compact (virtual) proarrow equipment}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $T$ be the ``free category'' monad on the [[virtual equipment]] $Span(Quiv)$ of [[spans]] in the category of [[quivers]], and let $T' = Mod(T)$ be the resulting monad on the virtual equipment $Mod(Span(Quiv)) = Cat(Quiv)$ whose objects are internal quivers in $Cat$, or equivalently internal categories in $Quiv$. Then a (pseudo) $T'$-algebra is precisely a (pseudo) double category, while a [[virtual T-algebra]] is precisely a virtual double category. In particular, the virtual equipment $Vdc = nKMod(Cat(Quiv),T')$ consists of virtual double categories, functors, and profunctors between them. Let $G$ be the [[pseudomonad]] on $Cat(Quiv)$ defined as follows. We may consider an object of $Cat(Quiv)$ as like a double category, but with only horizontal composition: there are no vertical composites or identities. If $C$ is such, then: \begin{itemize}% \item The objects of $G(C)$ are finite ordered lists of objects of $C$ with variance, such as $(x,y^{op},z,x^{op})$. Of course, we include the empty list. \item There can exist a horizontal arrow of $G(C)$ from one list $\vec{x}$ to another $\vec{y}$ only if the two lists have the same length, say $n$. In this case, such an arrow is given by a permutation $\sigma \in S_n$ such that the variance of $x_i$ matches the variance of $y_{\sigma (i)}$, together with for each $i$ a horizontal arrow $x_i \to y_{\sigma(i)}$ in $C$. Composition of these is defined in the evident way using composition in $C$ and multiplying permutations. \item A vertical arrow from $\vec{x}$ to $\vec{y}$ in $G(C)$ is given by a ``graph'' from $\vec{x}$ to $\vec{y}$ labeled by vertical arrows of $C$, together with an ordered list of endo-vertical-arrows of $C$ (called ``loops''). To be precise, by such a ``graph'' we mean a fixed-point-free involution of $\vec{x} \sqcup \vec{y}^{op}$ which reverses variance. Here $\vec{y}^{op}$ means reverse the variance all through $\vec{y}$; thus if $x_i$ is matched with $y_j$, they must have the \emph{same} variance, while if $x_i$ is matched with $x_j$, or $y_i$ with $y_j$, they must have opposite variances. To define a vertical arrow in $G(C)$, together with such a graph we also require, for each matched pair, a vertical arrow in $C$, according to the following rules. If $x_i$ is matched with $y_j$ and neither is ``opped,'' then we require a vertical arrow $x_i\to y_j$, while if both are ``opped,'' we require instead a vertical arrow $y_j\to x_i$. And if $x_i$ is matched with $x_j^{op}$, we require a vertical arrow $x_i\to x_j$, while if $y_i$ is matched with $y_j^{op}$, we require a vertical arrow $y_j\to y_i$. (And, in addition to all this, we also require an ordered list of loops.) \item The squares in $G(C)$ are defined in a straightforward way, incorporating two graphs which are related by a pair of permutations, and a collection of labeling squares from $C$ with appropriately chosen boundaries. \end{itemize} With this definition, $G$ is evidently an endofunctor of the category of $Cat$-quivers. We can extend it to the virtual equipment $Cat(Quiv)$ in a straightforward way, mimicking the definition above for horizontal arrows and squares to define it on the proarrows (which are like [[double profunctors]] but, again, without vertical composites). Note that the action of $G$ on vertical arrows is very much like that of the monad on $Cat$ whose algebras are [[compact closed categories]]. The main difference is that in the latter, rather than an \emph{ordered} list of loops (an element of the [[free monoid]] on endomorphims), we have an element of the free \emph{commutative} monoid on the endomorphisms. This change is what will make $G$ be only a pseudomonad, rather than a monad, but it is also crucial for the applications. We next extend $G$ to a pseudomonad in the [[Gray-category]] of [[virtual equipments]]. The unit $C\to G(C)$ is easy to define and strictly natural: an object $x$ goes to the unary list $(x)$, horizontal arrows are labeled with the unique permutation of one element, and vertical arrows are labeled with the unique graph between two such unary lists. The multiplication is somewhat trickier\ldots{}. The multiplication defined in this way is still strictly natural, and it satisfies the laws relating it to the unit transformation strictly, but its ``associativity'' law is only satisfied up to isomorphism, making $G$ into a fairly strict sort of pseudomonad. We now claim that there is a [[distributive law]] relating $T'$ to $G$, and therefore $G$ has the structure of a pseudomonad on the object $(Cat(Quiv),T')$ in the category of monads-on-virtual-equipments\ldots{}. It follows by the functoriality of the construction of [[generalized multicategories]] that $G$ induces a pseudomonad $G' = nKMod(G,T')$ on the virtual equipment $Vdc = nKMod(Cat(Quiv),T')$ of virtual double categories. Moreover, we can verify that $G'$ preserves pseudo double categories, and induces a monad $G''$ on the virtual equipment of double categories and [[double profunctors]]. Finally, we can define: \begin{itemize}% \item A \textbf{compact double category} is a pseudo $G''$-algebra. By general nonsense about distributive laws, this should be the same as a pseudo $G T'$-algebra, where $G T'$ is the composite pseudomonad on $Cat(Quiv)$ resulting from the distributive law. \item A \textbf{compact virtual double category} is a pseudo $G'$-algebra. \item A \textbf{virtually compact virtual double category} is a virtual $G T'$-algebra (in $Cat(Quiv)$). I \emph{don't} think this is quite the same as a virtual $G'$-algebra in $Vdc$. \item A \textbf{virtually compact double category} is a virtual $G''$-algebra. \end{itemize} In each of the above cases, we can replace ``double category'' by [[proarrow equipment]] if the (virtual) double category in question is additional a ([[virtual equipment|virtual]]) equipment. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The basic example is $\underline{Cat}$, in which the objects are categories, the horizontal arrows are functors, and the vertical arrows are profunctors. This is a compact proarrow equipment. There are similar examples $V \underline{Prof}$ for any Benabou [[cosmos]] $V$. In fact, as long as $V$ is any symmetric [[multicategory]], we can define a virtually compact virtual equipment $V \underline{Prof}$. \hypertarget{extraordinary_2cells}{}\subsection*{{Extraordinary 2-cells}}\label{extraordinary_2cells} Let $C$ be a virtually compact virtual double category with units (it could be an equipment). Note that the source of a general 2-cell in $C$ is a graph whose edges are labeled by composable strings of vertical arrows in $C$. Suppose also that $f\colon \vec{x} \to z$ and $g\colon \vec{y}\to z$ are horizontal arrows in $C$. An \textbf{extraordinary 2-cell} in $C$ is defined to be a 2-cell whose target is the unit/identity $U_z$, and whose source is a loop-free graph whose edges are all labeled by empty strings (or, equivalently, by identities). One can verify that in $\underline{Cat}$, this reproduces the usual notion of [[extraordinary natural transformation]]. \hypertarget{structures_in_a_compact_double_category}{}\subsection*{{Structures in a compact double category}}\label{structures_in_a_compact_double_category} In a (possibly virtual) compact double category, we can define internal notions of ``closed category,'' ``closed monoidal category,'' and so on. \ldots{} \hypertarget{representability}{}\subsection*{{Representability}}\label{representability} \ldots{} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2010/03/extraordinary_2multicategories.html}{Blog post} about extraordinary 2-multicategories and their ilk. \end{itemize} [[!redirects compact virtual double category]] [[!redirects virtually compact double category]] [[!redirects virtually compact virtual double category]] [[!redirects compact double categories]] [[!redirects compact virtual double categories]] [[!redirects virtually compact double categories]] [[!redirects virtually compact virtual double categories]] [[!redirects compact closed double category]] [[!redirects compact closed double categories]] [[!redirects compact equipment]] [[!redirects compact proarrow equipment]] [[!redirects compact virtual equipment]] [[!redirects virtually compact equipment]] [[!redirects virtually compact proarrow equipment]] [[!redirects virtually compact virtual equipment]] [[!redirects autonomous double category]] [[!redirects autonomous virtual double category]] [[!redirects virtually autonomous double category]] [[!redirects virtually autonomous virtual double category]] [[!redirects autonomous double categories]] [[!redirects autonomous virtual double categories]] [[!redirects virtually autonomous double categories]] [[!redirects virtually autonomous virtual double categories]] [[!redirects compact closed double category]] [[!redirects compact closed double categories]] [[!redirects autonomous equipment]] [[!redirects autonomous proarrow equipment]] [[!redirects autonomous virtual equipment]] [[!redirects virtually autonomous equipment]] [[!redirects virtually autonomous proarrow equipment]] [[!redirects virtually autonomous virtual equipment]] \end{document}