\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{compact object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{FinitelyPresentableObject}{Definition}\dotfill \pageref*{FinitelyPresentableObject} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{SubtletiesAndDifferentMeanings}{Subtleties and different meanings}\dotfill \pageref*{SubtletiesAndDifferentMeanings} \linebreak \noindent\hyperlink{CompactnessInAdditiveCategories}{Compactness in additive categories}\dotfill \pageref*{CompactnessInAdditiveCategories} \linebreak \noindent\hyperlink{CompactObjectsInTop}{Compact objects in $Top$}\dotfill \pageref*{CompactObjectsInTop} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An [[object]] of a [[category]] is called \emph{compact} if it is ``finite'' or ``small'' in some precise sense. There are however different formalizations of this idea. Here discussed is the notion, usually going by this term, where an object $X$ is called \emph{compact} if mapping out of it commutes with [[filtered colimits]]. This means that if any other object $A$ is given as the [[colimit]] of a ``suitably increasing'' family of objects $\{A_i\}$, then every morphism \begin{displaymath} X \to A = \lim_{\to_i} A_i \end{displaymath} out of the compact object $X$ into that colimit factors through one of the inclusions $A_i \to \underset{\to_i}\lim A_i$. The notion of \emph{[[small object]]} is essentially the same, with a bit more flexibility on when the family $\{A_i\}$ is taken to be ``suitably increasing''. An important application of the above factorization property is accordingly named the \emph{[[small object argument]]}. On the other hand, there is also the notion of \emph{[[finite object]]} (in a [[topos]]) which, while closely related, is different. See also \emph{\hyperlink{SubtletiesAndDifferentMeanings}{Subtleties and different meanings}} below. \hypertarget{FinitelyPresentableObject}{}\subsection*{{Definition}}\label{FinitelyPresentableObject} \begin{defn} \label{}\hypertarget{}{} Let $C$ be a [[locally small category]] that admits [[filtered colimits]]. Then an [[object]] $X \in C$ is \textbf{compact}, or \textbf{finitely presented} or \textbf{finitely presentable}, or \textbf{of finite presentation}, if the [[corepresentable functor]] \begin{displaymath} Hom_C(X,-) \colon C \to Set \end{displaymath} [[preserved limit|preserves]] these [[filtered colimits]]. This means that for every [[filtered category]] $D$ and every functor $F : D \to C$, the canonical morphism \begin{displaymath} \underset{\to_d}{\lim} C(X,F(d)) \xrightarrow{\simeq} C(X, \underset{\to_d}{\lim} F(d)) \end{displaymath} is an [[isomorphism]]. More generally, if $\kappa$ is a [[regular cardinal]], then an object $X$ such that $C(X,-)$ commutes with $\kappa$-[[filtered colimits]] is called \textbf{$\kappa$-compact}, or \textbf{$\kappa$-presented}, or \textbf{$\kappa$-presentable}. An object which is $\kappa$-compact for some regular $\kappa$ is called a [[small object]]. \end{defn} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{prop} \label{}\hypertarget{}{} A $\kappa$-small [[colimit]] of $\kappa$-compact objects is again a $\kappa$-compact object. \end{prop} \begin{proof} Let $D$ be a $\kappa$-[[small category]] and $X : D \to C$ a [[diagram]] of $\kappa$-compact objects. Let $I$ be a $\kappa$-[[filtered category]] and $A : I \to C$ a $\kappa$-filtered diagram in $C$. Then \begin{displaymath} Hom(\lim_{\to_d} X_d, \lim_{\to_i} A_i) \simeq \lim_{\leftarrow_d} Hom(X_d, \lim_{\to_i} A_i) \end{displaymath} by general properties of the [[hom functor]]. Now using that every $X_d$ is $\kappa$-compact and $I$ is $\kappa$-filtered this is \begin{displaymath} \cdots \simeq \lim_{\leftarrow_d} \lim_{\to_i} Hom(X_d, A_i) \,. \end{displaymath} Since this (co)limit is taken in [[Set]] ,the $\kappa$-small limit over $D$ commutes with the $\kappa$-filtered colimit \begin{displaymath} \cdots \simeq \lim_{\to_i} \lim_{\leftarrow_d} Hom(X_d, A_i) \,. \end{displaymath} We can take the limit again to a colimit in the first argument \begin{displaymath} \cdots \simeq \lim_{\to_i} Hom(\lim_{\to_d} X_d, A_i) \,, \end{displaymath} which proves the claim. \end{proof} \begin{prop} \label{}\hypertarget{}{} In a $\lambda$-[[accessible category]], if $\lambda$ is [[sharply smaller cardinal|sharply smaller]] than $\kappa$, then every $\kappa$-compact object is a [[retract]] of a $\kappa$-small $\lambda$-filtered colimit of $\lambda$-compact objects. \end{prop} \begin{proof} See \hyperlink{AdamekRosicky94}{Adamek-Rosicky, Remark 2.15}. It is noted there that with the more technical proof of \hyperlink{MakkaiPare89}{Makkai-Pare, Proposition 2.3.11} the words ``a retract of'' can be omitted. \end{proof} If we weaken the hypothesis to $\lambda\le \kappa$, then we retain all of the result except for $\lambda$-filteredness of the colimit. \begin{prop} \label{}\hypertarget{}{} In a locally $\lambda$-[[locally presentable category|presentable category]], if $\lambda\le \kappa$, then every $\kappa$-compact object is a [[retract]] of a $\kappa$-small colimit of $\lambda$-compact objects. \end{prop} \begin{proof} See \hyperlink{AdamekRosicky94}{Adamek-Rosicky, Remark 1.30}. It is claimed there that the words ``a retract of'' can be omitted by reference to an argument in Makkai-Pare, but it seems unclear how this argument is intended to be used. An alternative proof of this improvement is proposed \href{https://mathoverflow.net/q/325278}{at this mathoverflow question}. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item In $C =$ [[Set]] an object is compact precisely if it is a [[finite set]]. For this to hold constructively, [[filtered categories]] (appearing in the definition of \emph{[[filtered colimit]]}) have to be understood as categories admitting cocones of every \emph{Bishop-finite} diagram. (An object of Set is a [[finite set|Kuratowski-finite]] precisely if it is a [[finitely generated object]], or equivalently if it is [[compact space|compact]] when regarded as a [[discrete object|discrete]] topological space.) \item For $C$ a [[topos]], $X$ is compact if: \begin{itemize}% \item $C$ is a [[Grothendieck topos | sheaf topos]] on a site whose topology is generated by finite covering families and $X$ is a representable sheaf; \item in particular if $C$ is a [[coherent topos]] and $X$ is a [[coherent object]]. \end{itemize} \end{itemize} However, there exist compact objects which are not coherent, c.f. the [[Elephant]], D3.3.12. \begin{itemize}% \item In $C =$ [[Grp]] an object is compact precisely if it is [[finitely presented group|finitely presented]] as a group. \item More generally, if $C$ is any [[variety of algebras]], then an object is compact precisely if it is [[finitely presented algebra|finitely presented]] as an algebra. A proof may be found in \hyperlink{AdamekRosicky94}{Ad\'a{}mek-Rosick\'y{} 94, Corollary 3.13}. \item Let $X$ be a [[topological space]] and let $C = Op(X)$ be the [[category of open subsets]] of $X$. Then an [[open subset]] $U \in C$ is a compact object in $C$ precisely if it is a [[compact space|compact topological space]]. (It is \emph{not} true that $X$ is a compact object of $Top$ iff it is a compact topological space; see below.) \item A [[finite-dimensional vector space]] is compact in [[Vect]], see \href{finite-dimensional+vector+space#CompactClosure}{here}. \end{itemize} \hypertarget{SubtletiesAndDifferentMeanings}{}\subsection*{{Subtleties and different meanings}}\label{SubtletiesAndDifferentMeanings} One has to be careful about the following variations of the theme of compactness. (Some of these subtleties are resolved by noticing that there is a hierarchy of notions of compact objects that are secretly different but partly go by the same name. Some discussion of this is currently at \emph{[[compact topos]]}, but more detailed discussion should eventually be somewhere\ldots{}) In the [[Elephant]], what Johnstone calls \emph{compact objects} are those objects such that the [[top]] element of the [[poset of subobjects]] $\operatorname{Sub}(C)$ is a [[compact element]]; he reserves the term \emph{finitely-presented} for the notion of compact on this page. \hypertarget{CompactnessInAdditiveCategories}{}\subsubsection*{{Compactness in additive categories}}\label{CompactnessInAdditiveCategories} When $C$ is an [[additive category]] (often a [[triangulated category]]), an object $x$ in $C$ is called \textbf{compact} if for every set $S$ of objects of $C$ such that the coproduct $\coprod_{s\in S} s$ exists, the canonical map \begin{displaymath} \coprod_{s\in S} C(x,s)\to C(x,\coprod_{s\in S}s) \end{displaymath} is an [[isomorphism]] of [[commutative monoid|commutative monoids]]. Here is an application of this concept to characterize which abelian categories are categories of modules of some ring: \begin{utheorem} Let $C$ be an abelian category. If $C$ has all [[small category|small]] [[coproducts]] and has a compact [[projective object| projective]] [[generator]], then $C \simeq R Mod$ for some ring $R$. In fact, in this situation we can take $R = C(x,x)^{op}$ where $x$ is any compact projective generator. Conversely, if $C \simeq R Mod$, then $C$ has all small coproducts and $x = R$ is a compact projective generator. \end{utheorem} \begin{proof} This theorem, minus the explicit description of $R$, can be found as Exercise F on page 103 of Peter Freyd's book \href{http://www.emis.de/journals/TAC/reprints/articles/3/tr3.pdf#page=132}{Abelian Categories}. The first part of this theorem can also be found as Prop. 2.1.7. of Victor Ginzburg's \href{http://arxiv.org/PS_cache/math/pdf/0506/0506603v1.pdf#page=4}{Lectures on noncommutative geometry}. Conversely, it is easy to see that $R$ is a compact projective generator of $R Mod$. \end{proof} Zoran: While Ginzburg's reference is surely a worthy to look at, it would be better not to give false impression that this [[reconstruction theorem]] is due Ginzburg or at all new. It is rather a classical and well know fact probably from early 1960s, essentially small strengthening of a variant of a circle of abelian reconstruction theorems including the \href{http://myyn.org/m/article/gabriel-popescu-theorem-for-ab5-categories}{Gabriel-Popescu theorem}(probably our variant could be read off from classical algera book by Faith for example, or Popescu's book on abelian categories, in any case it is well known in [[noncommutative algebraic geometry]]). In fact for this fact, if I think better, the reconstruction belongs usually to expositions which treat classical Morita theory for rings. A triangulated category is \textbf{compactly generated} if it is generated (see [[generator]]) by a \emph{set} of compact objects. The notion can be modified for categories [[enriched category|enriched]] over a [[closed monoidal category]] (compare to the notions of finite and/or rigid objects in various contexts). Compact objects in the derived categories of quasicoherent sheaves over a scheme are called [[perfect complexes]]. Any [[compact object]] in the [[category of modules]] over a perfect ring is finitely generated as a module. In non-additive contexts, the above definition is not right. For instance, with this definition a [[topological space]] would be compact iff it is [[connected space|connected]]. In general one should expect to instead preserve filtered colimits, as above. \hypertarget{CompactObjectsInTop}{}\subsubsection*{{Compact objects in $Top$}}\label{CompactObjectsInTop} Recall the above example of [[compact space|compact topological spaces]]. Notice that the statement which one might expect, that a topological space $X$ is [[compact space|compact]] if it is a compact object in [[Top]], is not quite right in general. A counterexample is given for instance on page 49 of [[Mark Hovey|Hovey]]`s \emph{Model Categories}, which itself was corrected by Don Stanley (see the \href{http://hopf.math.purdue.edu/Hovey/model-err.pdf}{errata} of that book). See also the blog discussion \href{http://golem.ph.utexas.edu/category/2009/05/journal_club_geometric_infinit_3.html#c023790}{here}. Namely, the two-element set with the [[indiscrete topology]] is a compact space $X$ for which \begin{displaymath} Hom(X, -): Top \rightarrow Top \end{displaymath} doesn't preserve filtered colimits, in fact not even [[sequential colimit|colimits of sequences]] (functors out of the [[poset|ordered set]] of [[natural numbers]]). For example, consider the sequence of spaces \begin{displaymath} X_n=[n,\infty) \times \{0,1\} \end{displaymath} where the [[open sets]] are of the form \begin{displaymath} [n, \infty] \times \{0\} \cup [m,\infty) \times \{1\} \end{displaymath} (where $m \geq n$), plus the empty set. Define $X_n \rightarrow X_{n+1}$ so that it sends a pair $(k, \epsilon)$ to itself if $k \gt n$, and $(n,\epsilon)$ to $(n+1,\epsilon)$. This defines a functor \begin{displaymath} F: \mathbb{N} \rightarrow Top \end{displaymath} The colimit $X_\infty$ of this sequence is the two-element set $\{0,1\}$ with the indiscrete topology. However, the identity map on this space does not factor through any of the canonical maps $X_n \rightarrow X_\infty$. It follows that the comparison map \begin{displaymath} colim_n Hom(X_\infty, X_n) \rightarrow Hom(X_\infty, X_\infty) \end{displaymath} is not surjective, and therefore not an isomorphism. \emph{[[Todd Trimble|Todd]]} (posted from n-category cafe): I don't know if the story is any different for $X$ compact \emph{Hausdorff}, but it could be worth considering. But with a bit of care on the assumptions, similar results do hold: If $Y$ is compact, then $hom(Y,-)$ preserves colimits of functors mapping out of [[limit ordinals]], provided that the arrows of the cocone diagram, \begin{displaymath} X_\alpha \rightarrow X_\beta, \end{displaymath} are [[closed map|closed]] inclusions of $T_1$[[separation axiom|-spaces]]. (This applies for example to the sequence of inclusions of n-skeleta in a [[CW-complex]]. Taking $Y=S_k$, this has obvious desirable consequences for the functor $\pi_k$.) This example is discussed on page 50 of Hovey's book. Hovey wants this result in view of a [[small object argument]] on the way to proving that $Top$ is a [[model category]]. See \href{classical+model+structure+on+topological+spaces#CompactSubsetsAreSmallInCellComplexes}{this lemma} at \emph{[[classical model structure on topological spaces]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[compact element]] (in a [[(0,1)-category]]) \item \textbf{compact object} \item [[compact topos]] \item [[compact object in an (∞,1)-category]] \item [[small object]], [[small object argument]] \item [[finitely generated object]] \item [[locally presentable category]], [[accessible category]] \item [[compactly generated (∞,1)-category]] \end{itemize} [[!include finite objects -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Compact objects are discussed under the term ``finitely presentable'' or ``finitely-presentable'' objects for instance in \begin{itemize}% \item [[Jiří Adámek]], [[Jiří Rosický]], \emph{[[Locally Presentable and Accessible Categories]]}, Cambridge University Press in the London Mathematical Society Lecture Note Series, number 189, (1994) \item [[Michael Makkai]], [[Robert Paré]], \emph{Accessible categories: The foundations of categorical model theory} Contemporary Mathematics 104. American Mathematical Society, Rhode Island, 1989. \item [[Masaki Kashiwara]], [[Pierre Schapira]], around Definition 6.3.3 of \emph{[[Categories and Sheaves]]}; \item [[Peter Johnstone]], \emph{[[Stone Spaces]]}, Definition VI.1.8; \item [[Peter Johnstone]], the \emph{[[Elephant]]}, D2.3.1. \end{itemize} For the pages quoted in the context of the discussion of compact objects in [[Top]] see \begin{itemize}% \item [[Mark Hovey]], \emph{Model categories}. \end{itemize} For the general definition with an eye towards the definition of [[compact object in an (infinity,1)-category]] see section A.1.1 section 5.3.4 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects compact object]] [[!redirects compact objects]] [[!redirects finitely presentable object]] [[!redirects finitely presentable objects]] [[!redirects finitely-presentable object]] [[!redirects finitely-presentable objects]] [[!redirects presentable object]] [[!redirects presentable objects]] \end{document}