\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{compactly generated topological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{kaonization}{Kaonization}\dotfill \pageref*{kaonization} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cartesian_closure}{Cartesian closure}\dotfill \pageref*{cartesian_closure} \linebreak \noindent\hyperlink{local_cartesian_closure}{Local cartesian closure}\dotfill \pageref*{local_cartesian_closure} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[topological space]] is \emph{compactly generated} if (in a certain sense) the continuous images in it of all [[compact Hausdorff space]]s tell you everything about its topology. Compactly generated spaces form a [[convenient category of topological spaces]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A [[function]] $f\colon X \to Y$ between [[topological space]]s is \textbf{$k$-continuous} if for all [[compact Hausdorff space]]s $C$ and [[continuous functions]] $t\colon C \to X$ the composite $f \circ t\colon C \to Y$ is continuous. The following conditions on a space $X$ are equivalent: \begin{enumerate}% \item For all spaces $Y$ and all functions $f\colon X \to Y$, $f$ is continuous if and only if $f$ is $k$-continuous. \item There is a [[set]] $S$ of compact Hausdorff spaces such that the previous condition holds for all $C \in S$. \item $X$ is an [[identification space]] of a [[disjoint union]] of compact Hausdorff spaces. \item A [[subspace]] $U \subseteq X$ is [[open subspace|open]] if and only if the [[preimage]] $t^{-1}(U)$ is open for any compact Hausdorff space $C$ and continuous $t\colon C \to X$. \end{enumerate} A space $X$ is a \textbf{$k$-space} if any (hence all) of the above conditions hold. Some authors also say that a $k$-space is \textbf{compactly generated}, while others reserve that term for a $k$-space which is also \emph{[[weak Hausdorff space|weak Hausdorff]]}, meaning that the image of any $t\colon C\to X$ is closed (when $C$ is compact Hausdorff). Some authors go on to require a [[Hausdorff space|Hausdorff]] space, but this seems to be unnecessary. Sometimes $k$-spaces are called \textbf{Kelley spaces}, after [[John Kelley]], who studied them extensively; however, they predate him and the `$k$' does not stand for his name. (Probably it has something to do with `compact' or `kompakt'.) \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} Examples of compactly generated spaces include \begin{example} \label{}\hypertarget{}{} Every [[compact space]] is compactly generated. \end{example} \begin{example} \label{}\hypertarget{}{} Every [[locally compact space]] is compactly generated. \end{example} \begin{example} \label{}\hypertarget{}{} Every [[topological manifold]] is compactly generated \end{example} \begin{example} \label{CWComplexIsCompactlyGenerated}\hypertarget{CWComplexIsCompactlyGenerated}{} Every [[CW-complex]] is a compactly generated topological space. \end{example} \begin{proof} Since a CW-complex $X$ is a [[colimit]] in [[Top]] over attachments of standard [[n-disks]] $D^{n_i}$ (its cells), by the characterization of colimits in $Top$ (\href{Top#DescriptionOfLimitsAndColimitsInTop}{prop.}) a subset of $X$ is open or closed precisely if its restriction to each cell is open or closed, respectively. Since the $n$-disks are compact, this implies one direction: if a subset $A$ of $X$ intersected with all compact subsets is closed, then $A$ is closed. For the converse direction, since [[a CW-complex is a Hausdorff space]] and since [[compact subspaces of Hausdorff spaces are closed]], the intersection of a closed subset with a compact subset is closed. \end{proof} \begin{example} \label{}\hypertarget{}{} Every [[first countable space]] is a compactly generated space. \end{example} \begin{proof} Since the topology is determined by convergent sequences = maps from one-point [[compactification]] $\mathbb{N} \cup \{\infty\}$); these include all Fr\'e{}chet spaces. \end{proof} \hypertarget{kaonization}{}\subsection*{{Kaonization}}\label{kaonization} Let $k\Top$ denote the category of $k$-spaces and continuous maps, and $\Top_k$ denote the category of all topological spaces and $k$-continuous maps. We have inclusions \begin{displaymath} k\Top \to \Top \to \Top_k \end{displaymath} of which the first is the inclusion of a [[full subcategory|full]] [[coreflective subcategory]], the second is [[bijective on objects functor|bijective on objects]], and the composite $k\Top \to Top_k$ is an [[equivalence of categories]]. The [[coreflection]] $\Top \to k\Top$ is denoted $k$, and is sometimes (e.g. by [[M M Postnikov]]) also called \textbf{kaonization} and sometimes (e.g. by [[Peter May]]) \textbf{$k$-ification}. This functor is constructed as follows: we take $k(X)=X$ as a set, but with the topology whose closed sets are those whose intersection with compact Hausdorff subsets of (the original topology on) $X$ is closed (in the original topology on $X$). Then $k(X)$ has all the same closed sets and possibly more, hence all the same open sets and possibly more. In particular, the identity map $id:k(X)\to X$ is continuous, and forms the counit of the coreflection. Thus this coreflection has a counit which is both [[monic]] and [[epic]], i.e. a ``[[bimorphism]]''---such a coreflection is sometimes called a ``bicoreflection.'' Moreover, the identity $id: X \to k(X)$ is $k$-continuous, so that the counit becomes an isomorphism in $\Top_k$. This shows that $k\Top \to \Top_k$ is [[essentially surjective functor|essentially surjective]], and it is fully faithful since any $k$-continuous function between $k$-spaces is $k$-continuous; hence it is an equivalence. Since $k\Top \hookrightarrow \Top$ is coreflective, it follows that $k\Top$ is [[complete category|complete]] and [[cocomplete category|cocomplete]]. Its [[colimits]] are constructed as in $Top$, but its [[limits]] are the $k$-ification of limits in $Top$. This is nontrivial already for [[products]]: the $k$-space product $X\times Y$ is the $k$-ification of the usual [[product topology]]. The $k$-space product is better behaved in many ways; e.g. it enables [[geometric realization]] to preserve products (and all finite limits), and the product of two [[CW complexes]] to be another CW complex. If one is interested in $k$-spaces which are also [[weakly Hausdorff space|weak Hausdorff]], then there is a further [[reflector]] which must be applied; see [[weakly Hausdorff space]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cartesian_closure}{}\subsubsection*{{Cartesian closure}}\label{cartesian_closure} The categories $k\Top\simeq \Top_k$ are [[cartesian closed category|cartesian closed]]. (While in [[Top]] only some objects are exponentiable, see [[exponential law for spaces]].) For arbitrary spaces $X$ and $Y$, define the \emph{test-open} or \emph{compact-open topology} on $\Top_k(X,Y)$ to have the [[subbase]] of sets $M(t,U)$, for a given compact Hausdorff space $C$, a map $t\colon C \to X$, and an open set $U$ in $Y$, where $M(t,U)$ consists of all $k$-continuous functions $f\colon X \to Y$ such that $f(t(C))\subseteq U$. (This is slightly different from the usual [[compact-open topology]] if $X$ happens to have non-Hausdorff compact subspaces; in that case the usual definition includes such subspaces as tests, while the above definition excludes them. Of course, if $X$ itself is Hausdorff, then the two become identical.) With this topology, $\Top_k(X,Y)$ becomes an [[exponential object]] in $Top_k$. It follows, by [[Yoneda lemma]] arguments (\href{closed+monoidal+category#TensorHomIsoInternalizes}{prop.}), that the bijection \begin{displaymath} k\Top(X \times Y, Z) \to kTop(X,k\Top(Y,Z)) \end{displaymath} is actually an isomorphism in $\Top_k$, which we may call a \emph{$k$-homeomorphism} (e.g. \hyperlink{Strickland09}{Strickland 09, prop. 2.12}). In fact, it is actually a homeomorphism, i.e. an isomorphism already in $Top$. [[Zoran Škoda]]: I do not understand the remark. I mean if the domain is k-space then by the characterization above continuous is the same as k-continuous. Thus if both domain and codomain are continuous then homeo is the same as k-homeo. I assume that even in noHausdorff case, the test-open topology for $X$ and $Y$ k-spaces gives a k-space and that the cartesian product has the correction for the k-spaces. [[Todd Trimble]]: That may be just the point: that the domain is not necessarily a $k$-space. I have to admit that I haven't worked through the details of this exposition, but one thing I tripped over is the fact that we're dealing with \emph{all} topological spaces $X$, $Y$, not just $k$-spaces. [[Mike Shulman]]: But any topological space is isomorphic in $k\Top$ to its $k$-ification, right? So $k\Top$ might as well be defined to consist of $k$-spaces and continuous maps. [[Todd Trimble]]: Okay, you're right that makes sense. So in that case, it seems that Zoran definitely has a point here. [[Mike Shulman]]: See the \href{https://nforum.ncatlab.org/comments.php?DiscussionID=1958}{nForum discussion}. It follows that the category $k\Top$ of $k$-spaces and continuous maps is also cartesian closed, since it is equivalent to $\Top_k$. Its exponential object is the $k$-ification of the one constructed above for $\Top_k$. Since for $k$-spaces, $k$-continuous implies continuous, the underlying set of this exponential space $k\Top(X,Y)$ is the set of all continuous maps from $X$ to $Y$. Thus, when $X$ is Hausdorff, we can identify this space with the $k$-ification of the usual [[compact-open topology]] on $Top(X,Y)$. Finally, this all remains true if we also impose the weak Hausdorff, or Hausdorff, conditions. \hypertarget{local_cartesian_closure}{}\subsubsection*{{Local cartesian closure}}\label{local_cartesian_closure} Unfortunately neither of the above categories is [[locally cartesian closed category|locally cartesian closed]]. However, if $K$ is the category of not-necessarily-weak-Hausdorff k-spaces, and $A$ and $B$ are k-spaces that are weak Hausdorff, then the pullback functor $K/B\to K/A$ has a right adjoint. This is what May and Sigurdsson used in their book \emph{Parametrized homotopy theory}. There is still a lot of work on fibred exponential laws and their applications. One reason for the success and difficulties is that it is easy to give a topology on the space of closed subsets of a space $X$ by regarding this as the space of maps to the [[Sierpinski space]] (the set $\{0,1\}$ of [[truth value]]s in which $\{1\}$ is closed but not open). From this one can get an [[exponential law for spaces]] over $B$ if $B$ is $T_0$, so that all fibres of spaces over $B$ are closed in their total space. Note that weak Hausdorff implies $T_0$. [[Mike Shulman]]: What precisely does ``get an exponential law'' mean? Do you mean that $k Top/B$ is cartesian closed if $B$ is $T_0$? \emph{Toby}: Hopefully that is explained in the new article. \emph{Mike}: Which new article? [[exponential law for spaces]]? That page doesn't talk about fibered exponentials at all. \emph{Toby}: Seeing this later, I no longer know what article I meant. \hypertarget{references}{}\subsection*{{References}}\label{references} The following article attributes the concept to Hurewicz: \begin{itemize}% \item David Gale, \emph{Compact Sets of Functions and Function Rings} , Proc. AMS \textbf{1} (1950) pp.303-308. (\href{http://www.ams.org/journals/proc/1950-001-03/S0002-9939-1950-0036503-X/S0002-9939-1950-0036503-X.pdf}{pdf}) \end{itemize} Compactly generated spaces are discussed by J. L. Kelley in his book \begin{itemize}% \item [[John Kelley]], \emph{General topology}, D. van Nostrand, New York 1955. \end{itemize} An early textbook account is in \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], sections I.1.5.3 and III.2 of \emph{[[Calculus of fractions and homotopy theory]]}, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer (1967) (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/GZ.pdf}{pdf}) \end{itemize} A lectue note careful about the (weakly) Hausdorff assumptions when needed/wanted is in the lecture notes \begin{itemize}% \item [[Neil Strickland]], \emph{The category of CGWH spaces}, 2009 (\href{http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf}{pdf}) \end{itemize} Many properties of compactly generated Hausdorff spaces are used to establish a variant of the theory of fibrations, cofibrations and deformation retracts in \begin{itemize}% \item [[Norman Steenrod]], \emph{A convenient category of topological spaces}, Michigan Math. J. 14 (1967) 133--152, \href{http://projecteuclid.org/euclid.mmj/1028999711}{project euclid} \end{itemize} Gabriel and Zisman discuss the connection with the exactness of [[geometric realization]] in \begin{itemize}% \item [[Peter Gabriel]], Michel Zisman, \emph{Calculus of Fractions and Homotopy Theory} , Springer Heidelberg 1967. (ch.III.3-4) \end{itemize} Other and later references include \begin{itemize}% \item [[Gaunce Lewis]], \emph{Compactly generated spaces} (\href{http://www.math.uchicago.edu/~may/MISC/GaunceApp.pdf}{pdf}), appendix A of \emph{The Stable Category and Generalized Thom Spectra} PhD thesis Chicago, 1978 \item [[George Whitehead]], \emph{Elements of homotopy theory} \item [[Brian Day|Brian J. Day]], \emph{Relationship of Spanier's Quasi-topological Spaces to k-Spaces} , M. Sc. thesis University of Sydney 1968. (\href{http://www.math.mq.edu.au/~street/DayMasters.pdf}{pdf}) \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, around note 4.3.22 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \item [[Ronnie Brown]], \emph{Topology and groupoids}, Booksurge 2006, section 5.9. \item Booth, Peter I.; Heath, Philip R.; Piccinini, Renzo A. Fibre preserving maps and functional spaces. Algebraic topology (Proc. Conf., Univ. British Columbia, Vancouver, B.C., 1977), pp. 158--167, Lecture Notes in Math., 673, Springer, Berlin, 1978. \item [[Peter May]], \emph{[[A concise course in algebraic topology]]}, Chapter 5 \item Samuel Smith, \emph{The homotopy theory of function spaces: a survey} (\href{http://arxiv.org/abs/1009.0804}{arXiv:1009.0804}) \item [[Stefan Schwede]], section A.2 of \emph{[[Symmetric spectra]]} (2012) \end{itemize} [[!redirects compactly generated topological space]] [[!redirects compactly generated topological spaces]] [[!redirects compactly generated space]] [[!redirects compactly generated spaces]] [[!redirects k-space]] [[!redirects k-spaces]] [[!redirects kaonization]] [[!redirects kaonizations]] [[!redirects kaonisation]] [[!redirects kaonisations]] [[!redirects Kelley space]] [[!redirects Kelley spaces]] \end{document}