\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{compatible localization} There are several notions under a name of compatible localization; where localization pertains to the localization of rings or of localization of categories. \hypertarget{pairwise_compatibility_of_a_family_of_localizations}{}\subsection*{{(Pairwise) compatibility of a family of localizations}}\label{pairwise_compatibility_of_a_family_of_localizations} Consider a family of localizations sharing the same source ring (or source category). Two Gabriel localizations $i_{R k}: R\to R_k$, $k = 1,2$ of a ring $R$, with corresponding localization endofunctors for modules $Q_{k}:M\to M_k$ are mutually compatible if the consecutive localization of $Q_2 Q_1 R$ is naturally a ring (or equivalently $Q_1 Q_2 R$ is a ring), such that the corresponding localization arrow is a morphism of rings. This is equivalent to the following more general criterium. Two [[affine localization]]s with the inverse image functors $Q_k^*$ and direct image functors $Q_{k*}: A\to A_k$, $k = 1,2$ are mutually compatible if the endofunctors $Q_k:=Q_{k*}Q_k^*$ mutually commute as endofunctors of $A$. According to Thomason-Trobaugh, an [[algebraic scheme]] is \textbf{semiseparated} if it has an affine cover such that the intersection of any two affines in the cover is affine (semiseparated cover). For example, every [[separated scheme]] is semiseparated. [[Alexander Rosenberg]] extends this terminology to [[noncommutative scheme]]s by observing that an affine cover is semiseparated iff the corresponding localization functors restricting the category of quasicoherent sheaves on the whole scheme to an element of a cover, form a compatible family of affine localizations. \hypertarget{coaction_compatible_localizations}{}\subsection*{{Coaction compatible localizations}}\label{coaction_compatible_localizations} Given a right $B$-comodule algebra $(E, \rho)$ for a bialgebra $H$, with coaction $\rho : E\to E\otimes H$, an Ore localization of rings (or more general affine localization) $j : E\to E'$ is $\rho$-compatible if there exists a morphism $\rho': E'\to E\otimes H$ such that the following diagram commutes: \begin{displaymath} \itexarray{ E & \stackrel{j}\to & E'\\ \downarrow\rho && \downarrow \rho'\\ E\otimes H &\stackrel{j\otimes H}\to & E'\otimes H } \end{displaymath} \hypertarget{compatibility_of_localizations_and_endofunctors}{}\subsection*{{Compatibility of localizations and endofunctors}}\label{compatibility_of_localizations_and_endofunctors} A localization functor $Q^*=Q^*_\Sigma : A\to B$ (not necessarily having a right adjoint) universally inverting a family $\Sigma$ of morphisms in $A$ is compatible with an endofunctor $G:A\to A$ if $G(\Sigma)\subset \Sigma$. By the universality property of the localization functor, this is equivalent to the existence of a functor $G_\Sigma\in B$ such that $Q^* G = G_\Sigma Q^*$. If $Q^*$ is a localization having a fully faithful right adjoint $Q_*$, with counit $\epsilon$ (which is hence iso) and unit $\eta$; then the compatibility of $Q^*$ with an endofunctor $G$ is equivalent to any of the following: (i) there exists a distributive law $l : Q_* Q^* G\to G Q_* Q^*$ where $Q_* Q^*$ is understood as (the underlying functor of) the idempotent monad induced by the adjunction $Q^*\dashv Q_*$ (ii) the natural transformation $Q^* G\eta : Q^* G\to Q^* G Q_* Q^*$ is invertible (iii) there is a functor $G'$ and a natural isomorphism $Q^* G\cong G' Q^*$. If (i) holds then $l$ is invertible and uniquely determined by $G$ and the monad $Q^* Q_*$. Notice that $Q_* G_\Sigma \neq G Q_*$ in general. See [[zoranskoda:distributive law for idempotent monad]] for more. One can also consider the distributive laws $\tilde{l} : G Q_* Q^*\to Q_* Q^* G$. The inverse $l^{-1}$ of the distributive law $l: G Q_* Q^*\to Q_* Q^* G$ as above is the unique invertible example of such. It is not clear (to me at least -- [[Zoran Škoda|Zoran]]) if there are also noninvertible examples for $\tilde{l}$. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} For the pairwise compatibility of localizations see \begin{itemize}% \item [[Fred Van Oystaeyen]], \emph{Compatibility of kernel functors and localization functors}, Bull. Soc. Math. Belg. \textbf{28} (1976), no. 2, 131--137. \item [[Alain Verschoren]], \emph{Compatibility and stability}, Notas de Matem\'a{}tica Mathematical Notes, 3. Universidad de Murcia, Secretariado de Publicaciones e Intercambio Cient\'i{}fico, Murcia, 1990. xii+81 pp. ISBN: 84-7684-934-6 \item J. Mulet, A. Verschoren, \emph{On compatibility. II.}, Comm. Algebra 20 (1992), no. 7, 1897--1905. \href{http://dx.doi.org/10.1080/00927879208824438}{doi} \item M. I. Segura, D. Tarazona, A. Verschoren, \emph{On compatibility}, Comm. Algebra \textbf{17} (1989), no. 3, 677--690. \end{itemize} The compatibility of coactions with Ore localizations is introduced in \begin{itemize}% \item [[Zoran Škoda]], \emph{Localizations for construction of quantum coset spaces}, in ``Noncommutative geometry and Quantum groups'', W.Pusz, P.M. Hajac, eds. Banach Center Publications \textbf{61}, pp. 265--298, Warszawa 2003, \href{http://arxiv.org/abs/math.QA/0301090}{math.QA/0301090}. \end{itemize} The compatibilities between localization functors with endofunctors is formulated in \begin{itemize}% \item [[V. A. Lunts]], [[A. L. Rosenberg]], \emph{Differential calculus in noncommutative algebraic geometry I. D-calculus on noncommutative rings}, MPI 1996-53 \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=3894}{pdf} \end{itemize} A version with distributive laws is introduced in \begin{itemize}% \item [[Zoran Škoda]], Some equivariant constructions in noncommutative algebraic geometry, Georgian Mathematical Journal 16 (2009), No. 1, 183--202, \href{http://arxiv.org/abs/0811.4770}{arXiv:0811.4770}. \end{itemize} See also \begin{itemize}% \item [[Zoran Škoda]], \emph{Compatibility of (co)actions and localization}, \href{http://arxiv.org/abs/0902.1398}{arXiv:0902.1398} (preliminary version). \end{itemize} [[!redirects compatible localizations]] \end{document}