\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complete Boolean algebra} \hypertarget{complete_boolean_algebras}{}\section*{{Complete boolean algebras}}\label{complete_boolean_algebras} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{category_of_complete_boolean_algebras}{Category of complete Boolean algebras}\dotfill \pageref*{category_of_complete_boolean_algebras} \linebreak \noindent\hyperlink{relation_to_stonean_locales_and_boolean_locales}{Relation to Stonean locales and Boolean locales}\dotfill \pageref*{relation_to_stonean_locales_and_boolean_locales} \linebreak \noindent\hyperlink{stonean_duality}{Stonean duality}\dotfill \pageref*{stonean_duality} \linebreak \noindent\hyperlink{cabas}{CABAs}\dotfill \pageref*{cabas} \linebreak \noindent\hyperlink{algebraicity}{Algebraicity}\dotfill \pageref*{algebraicity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{complete Boolean algebra} is a [[complete lattice]] that is also a [[Boolean algebra]]. Since lattice homomorphisms of Boolean algebras automatically preserves the Boolean structure, the complete Boolean algebras form a [[full subcategory]] [[CompBoolAlg]] of [[CompLat]]. \hypertarget{category_of_complete_boolean_algebras}{}\subsection*{{Category of complete Boolean algebras}}\label{category_of_complete_boolean_algebras} A natural notion of [[morphism]] for complete Boolean algebras is that of a continuous homomorphism of Boolean algebras, also known as complete Boolean homomorphisms. These can be defined as homomorphisms of Boolean algebras that preserve [[suprema]], or, equivalently, [[infima]]. It suffices to require preservation of [[suprema]] of [[directed subsets]]. With this notion of morphisms, complete Boolean algebras form a category. \hypertarget{relation_to_stonean_locales_and_boolean_locales}{}\subsection*{{Relation to Stonean locales and Boolean locales}}\label{relation_to_stonean_locales_and_boolean_locales} The category of complete Boolean algebras is equivalent to the category of [[Boolean locales]] and [[Stonean locales]]. The latter fact is also known as the (localic) \textbf{Stonean duality}. In presence of the [[axiom of choice]], the category of [[Stonean locales]] is equivalent to the category of [[Stonean spaces]], so the latter is contravariantly equivalent to the category of complete Boolean algebras. The latter fact is also known as the (traditional) \textbf{Stonean duality}. \hypertarget{stonean_duality}{}\subsection*{{Stonean duality}}\label{stonean_duality} The [[Stone duality]] establishes a [[contravariant equivalence]] of [[categories]] between the category of [[Boolean algebras]] and the category of [[Stone spaces]]. The latter is a [[full subcategory]] of the category [[Top]] of [[topological spaces]] and [[continuous maps]] on [[compact]] [[totally disconnected]] [[Hausdorff]] [[topological spaces]]. Recall that a [[Stonean space]] is a [[compact]] [[extremally disconnected]] [[Hausdorff]] [[topological space]]. [[Morphisms]] of [[Stonean spaces]] are defined to be [[open]] [[continuous maps]]. Restricting the [[Stone duality]] produces a [[contravariant equivalence]] between the category of complete Boolean algebres and the category of [[Stonean spaces]]. See Corollary{\tt \symbol{126}}6.10(2) in Bezhanishvili \cite{SDGC}. \hypertarget{cabas}{}\subsection*{{CABAs}}\label{cabas} Assuming [[excluded middle]], complete \emph{[[atomic Boolean algebra|atomic]]} Boolean algebras are (up to [[isomorphism]]) precisely [[power sets]]. In fact, taking power sets defines a [[fully faithful functor]] from the [[opposite category]] of [[Set]] to [[Comp Bool Alg]] whose [[essential image]] consists of the complete atomic boolean algebras. See at \emph{\href{Set#OppositeCategory}{Set -- Properties -- Opposite category}}. These abstract representations of power sets are important enough to have their own abbreviation: `CABA'. This property of CABAs is not applicable in [[constructive mathematics]], where power sets are rarely boolean algebras. However, we can use [[discrete space|discrete]] [[locales]] instead (or rather, their corresponding [[frames]]). That is, define a \textbf{CABA} to be (not a complete atomic boolean algebra but) a frame $X$ such that the locale maps $X \to 1$ and $X \to X \times X$ (which in the category of frames are maps $0 \to X$ and $X + X \to X$) are [[open map|open]] (as locale maps). Then it should be (I will check) a classical theorem that CABAs and complete atomic boolean algebras are the same, and a constructive theorem that CABAs and power sets are the same (in the same functorial manner as above). \hypertarget{algebraicity}{}\subsection*{{Algebraicity}}\label{algebraicity} Complete Boolean algebras are the models of an [[algebraic theory]] (in which the operations, notably $j$-indexed [[suprema]] and infima, have arities $j$ unbounded by any cardinal). It follows from general principles that the underlying-set functor $U: CompBoolAlg \to Set$ preserves and reflects limits and isomorphisms. However, this functor $U$ is \emph{not} [[monadic functor|monadic]]; in fact, it does not even possess a left adjoint. Indeed, while the free complete Boolean algebra on a \emph{finite} set $X$ exists and coincides with the free Boolean algebra on $X$ (it is finite, being isomorphic to the double power set $P(P X)$), we have \begin{uthm} There is no free complete Boolean algebra on countably many generators. \end{uthm} As a consequence, $CompBoolAlg$ is not cocomplete (otherwise there would exist a countable coproduct of copies of $P(P 1)$, which is ruled out by the previous theorem). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Boolean locale]] \item [[Stonean locale]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance around theorem 2.4 of \begin{itemize}% \item [[Jaap van Oosten]], \emph{Basic category theory} (\href{http://www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item PlanetMat, \emph{\href{http://planetmath.org/RepresentingACompleteAtomicBooleanAlgebraByPowerSet.html}{representing a complete atomic Boolean algebra by power set}} \end{itemize} The [[Stone duality]] for complete Boolean algebras is explained in $\backslash$bibitem\{SDGC\} [[Guram Bezhanishvili]], \emph{Stone duality and Gleason covers through de Vries duality}. Topology and its Applications 157 (2010), 1064–1080. [[!redirects complete Boolean algebra]] [[!redirects complete boolean algebra]] [[!redirects complete Boolean algebras]] [[!redirects complete boolean algebras]] [[!redirects complete Boolean lattice]] [[!redirects complete boolean lattice]] [[!redirects complete Boolean lattices]] [[!redirects complete boolean lattices]] [[!redirects complete Boolean ring]] [[!redirects complete boolean ring]] [[!redirects complete Boolean rings]] [[!redirects complete boolean rings]] [[!redirects complete atomic Boolean algebra]] [[!redirects complete atomic boolean algebra]] [[!redirects complete atomic Boolean algebras]] [[!redirects complete atomic boolean algebras]] [[!redirects complete atomic Boolean lattice]] [[!redirects complete atomic boolean lattice]] [[!redirects complete atomic Boolean lattices]] [[!redirects complete atomic boolean lattices]] [[!redirects complete atomic Boolean ring]] [[!redirects complete atomic boolean ring]] [[!redirects complete atomic Boolean rings]] [[!redirects complete atomic boolean rings]] [[!redirects caba]] [[!redirects CABA]] [[!redirects cabas]] [[!redirects CABAs]] [[!redirects caba's]] [[!redirects CABA's]] [[!redirects caba's]] [[!redirects CABA's]] \end{document}