\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complete Segal space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{CompleteSegalSpaces}{Complete Segal spaces}\dotfill \pageref*{CompleteSegalSpaces} \linebreak \noindent\hyperlink{CompleteSegalSpaceObjects}{Complete Segal space objects}\dotfill \pageref*{CompleteSegalSpaceObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{CharacterizationOfCompleteness}{Characterization of Completeness}\dotfill \pageref*{CharacterizationOfCompleteness} \linebreak \noindent\hyperlink{ModelCategoryStructure}{Model category structure}\dotfill \pageref*{ModelCategoryStructure} \linebreak \noindent\hyperlink{RelationToSimplicialLocalization}{Relation to simplicial localization}\dotfill \pageref*{RelationToSimplicialLocalization} \linebreak \noindent\hyperlink{model_categories_for_presheaves}{Model categories for presheaves}\dotfill \pageref*{model_categories_for_presheaves} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{OrdinaryCategoriesAsCompleteSegalSpaces}{Ordinary categories as complete Segal spaces}\dotfill \pageref*{OrdinaryCategoriesAsCompleteSegalSpaces} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{the_construction}{The construction}\dotfill \pageref*{the_construction} \linebreak \noindent\hyperlink{PropertiesOfTheInclusionOfCategories}{Properties of the inclusion}\dotfill \pageref*{PropertiesOfTheInclusionOfCategories} \linebreak \noindent\hyperlink{RelativeCategoryAsCompleteSegalSpace}{Relative and Model categories as complete Segal spaces}\dotfill \pageref*{RelativeCategoryAsCompleteSegalSpace} \linebreak \noindent\hyperlink{QuasiCategoriesAsCompleteSegal}{Quasi-categories as complete Segal spaces}\dotfill \pageref*{QuasiCategoriesAsCompleteSegal} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesGroupoidalVersion}{Groupoidal version}\dotfill \pageref*{ReferencesGroupoidalVersion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{complete Segal space} is a model for an [[internal category in an (∞,1)-category]] in [[∞Grpd]], with the latter [[presentable (∞,1)-category|presented]] by [[sSet]]/[[Top]]. So complete Segal spaces present [[(∞,1)-categories]]. They are also called \emph{Rezk categories} after [[Charles Rezk]]. More in detail, a complete Segal space $X$ is \begin{itemize}% \item for each $n \in \mathbb{N}$ a [[Kan complex]] $X_n$, thought of as the \emph{space of composable sequences of $n$-morphisms and their composites}; \item forming a [[simplicial object]] $X_\bullet$ in [[sSet]] (a [[bisimplicial set]]); \end{itemize} such that \begin{enumerate}% \item there is a [[composition]] operation well defined up to [[coherence|coherent]] [[homotopy]]: exibited by the [[Segal maps]] \begin{displaymath} X_k \to X_1 \times_{X_0} \cdots \times_{X_0} X_1 \end{displaymath} (into the iterated [[homotopy pullback]] of the [[∞-groupoid]] of 1-morphisms over the $\infty$-groupoid of objects) being [[homotopy equivalences]] (so far this defines a \emph{[[Segal space]]}); \item the notion of [[equivalence]] in $X_\bullet$ is compatible with that in the ambient [[∞Grpd]] (``completeness''): the sub-simplicial object $Core(X_\bullet)$ on the invertible morphisms in each degree is homotopy constant: it has all face and degeneracy maps being [[homotopy equivalences]]. (this says that if a morphism is an equivalence under the explicit composition operation then it is already a morphism in $X_0$ ). \end{enumerate} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We first discuss \begin{itemize}% \item \hyperlink{CompleteSegalSpaces}{Complete Segal spaces} \end{itemize} as such, and then the more general notion of \begin{itemize}% \item \hyperlink{CompleteSegalSpaceObjects}{Complete Segal space objects} \end{itemize} internal to a suitable model category/$(\infty,1)$-category $\mathcal{C}$ -- this reduces to the previous notion for $\mathcal{C} = sSet_{Quillen}$. \hypertarget{CompleteSegalSpaces}{}\subsubsection*{{Complete Segal spaces}}\label{CompleteSegalSpaces} \begin{defn} \label{}\hypertarget{}{} A \textbf{[[Segal space]]} is a [[simplicial object]] in [[simplicial sets]] \begin{displaymath} X \in [\Delta^{op}, sSet] \end{displaymath} such that \begin{itemize}% \item it is fibrant in the [[Reedy model structure]] $[\Delta^{op}, sSet_{Quillen}]_{Reedy}$; \item it is a [[local object]] with respect to the [[spine]] inclusions $\{Sp[n] \hookrightarrow \Delta[n]\}_{n \in \mathbb{N}}$; equivalently: for all $n \in \mathbb{N}$ the [[Segal map]] \begin{displaymath} X_n \to X_1 \times_{X_0} \cdots \times_{X_0} X_1 \end{displaymath} is a [[weak homotopy equivalence]] (of [[Kan complexes]], in fact). \end{itemize} \end{defn} (\hyperlink{Rezk}{Rezk, 4.1}). \begin{defn} \label{HomotopyCategory}\hypertarget{HomotopyCategory}{} For $X$ a Segal space, its \textbf{[[homotopy category]]} $Ho(X)$ is the [[Ho(Top)]]-[[enriched category]] whose [[objects]] are the vertices of $X_0$ \begin{displaymath} Obj(X) = (X_0)_0 \end{displaymath} and for $x,y \in Obj(X)$ the [[hom object]] is the [[homotopy type]] of the [[homotopy fiber product]] \begin{displaymath} Ho(X)(x,y) := \pi_0 \Big(\{x\} \times_{X_0} X_1 \times_{X_0} \{y\}\Big) \,. \end{displaymath} The [[composition]] \begin{displaymath} Ho_X(x,y) \times Ho_X(y,z) \to Ho_X(x,z) \end{displaymath} is the (uniquely defined) action of the [[infinity-anafunctor]] \begin{displaymath} X_1 \times_{X_0} X_1 \underoverset{\simeq}{(d_2, d_0)}{\leftarrow} X_2 \stackrel{d_1}{\to} X_1 \end{displaymath} on these connected components. \end{defn} (\hyperlink{Rezk}{Rezk, 5.3}) \begin{defn} \label{}\hypertarget{}{} For $X$ a Segal space, write \begin{displaymath} X_{hoequ} \hookrightarrow X_1 \end{displaymath} for the inclusion of the connected components of those vertices that become [[isomorphisms]] in the homotopy category, def. \ref{HomotopyCategory}. \end{defn} (\hyperlink{Rezk}{Rezk, 5.7}) \begin{defn} \label{}\hypertarget{}{} A Segal space $X$ is called a \textbf{complete Segal space} if \begin{displaymath} s_0 : X_0 \to X_{hoequ} \end{displaymath} is a weak equivalence. \end{defn} (\hyperlink{Rezk}{Rezk, 6.}) \begin{remark} \label{}\hypertarget{}{} This condition is equivalent to $X$ being a [[local object]] with respect to the morphism $N(\{0 \stackrel{\simeq}{\to} 1\}) \to *$. This is discussed \hyperlink{CharacterizationOfCompleteness}{below}. \end{remark} \begin{remark} \label{}\hypertarget{}{} The completeness condition may also be thought of as \emph{[[univalence]]}. See there for more. \end{remark} \hypertarget{CompleteSegalSpaceObjects}{}\subsubsection*{{Complete Segal space objects}}\label{CompleteSegalSpaceObjects} (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{CharacterizationOfCompleteness}{}\subsubsection*{{Characterization of Completeness}}\label{CharacterizationOfCompleteness} \begin{theorem} \label{}\hypertarget{}{} A Segal space $X$ is a complete Segal space precisely if it is a [[local object]] with respect to the morphism $N(0 \stackrel{\simeq}{\to} 1) \to *$, hence precisely if with respect to the canonical [[sSet]]-[[enriched category|enriched]] [[hom objects]] we have that \begin{displaymath} X_0 \simeq [\Delta^{op}, sSet](*, X) \to [\Delta^{op}, sSet](N(0 \stackrel{\simeq}{\to} 1), X) \end{displaymath} is a weak equivalence. \end{theorem} (\hyperlink{Rezk}{Rezk, theorem 6.2}) \hypertarget{ModelCategoryStructure}{}\subsubsection*{{Model category structure}}\label{ModelCategoryStructure} The category $[\Delta^{op}, sSet]$ of [[simplicial presheaves]] on the [[simplex category]] ([[bisimplicial sets]]) supports a [[model category]] structure whose fibrant objects are precisely the complete Segal spaces: the \emph{[[model structure for complete Segal spaces]]}. This presents the [[(∞,1)-category of (∞,1)-categories]]. \hypertarget{RelationToSimplicialLocalization}{}\subsubsection*{{Relation to simplicial localization}}\label{RelationToSimplicialLocalization} Given $\mathcal{C}$ a [[category with weak equivalences]] $\mathcal{W} \subset Mor(\mathcal{C})$ or more generally a ``[[relative category]]'', then there is canonically a complete Segal space associated with it by the ``relative nerve'' construction, def. \ref{RelativeNerve} followed by fibrant replacement, and hence by the \hyperlink{ModelCategoryStructure}{model structure} this determines an [[(∞,1)-category]] $N_{Rezk}(\mathcal{C},\mathcal{W})$ . On the other hand classical [[simplicial localization]]-theory provides several ways (e.g. [[hammock localization]]) to turn $(\mathcal{C}, \mathcal{W})$ into an [[(∞,1)-category]] $\mathcal{C}[\mathcal{W}]^{-1}$ which universally turns the elements in $\mathcal{W}$ into [[homotopy equivalences]]. \begin{theorem} \label{}\hypertarget{}{} These constructions are compatible in that there is an [[equivalence of (∞,1)-categories]] \begin{displaymath} N_{Rezk}(\mathcal{C},\mathcal{W}) \simeq \mathcal{C}[\mathcal{W}^{-1}] \,. \end{displaymath} \end{theorem} For [[simplicial model categories]] this is (\hyperlink{{#Rezk}}{Rezk, theorem 8.3}. For general [[model categories]] this is (\hyperlink{Bergner07}{Bergner 07, theorem 6.2}). For the fully general case this follows from results by [[Clark Barwick]], [[Daniel Kan]] and [[Bertrand Toën]] as pointed out by [[Chris Schommer-Pries]] \href{http://mathoverflow.net/a/93139/381}{here on MathOverflow}. \hypertarget{model_categories_for_presheaves}{}\subsubsection*{{Model categories for presheaves}}\label{model_categories_for_presheaves} There is a notion of [[right/left fibration of complete Segal spaces]] analogous to [[right/left Kan fibrations]] for [[quasi-categories]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} We discuss some examples. For more and more basic examples see also at \emph{\href{Segal+space#Examples}{Segal space -- Examples}}. \hypertarget{OrdinaryCategoriesAsCompleteSegalSpaces}{}\subsubsection*{{Ordinary categories as complete Segal spaces}}\label{OrdinaryCategoriesAsCompleteSegalSpaces} We discuss how an ordinary [[small category]] is naturally regarded as a complete Segal space. (\hyperlink{Rezk}{Rezk, 3.5}) \hypertarget{preliminaries}{}\paragraph*{{Preliminaries}}\label{preliminaries} We need the following basic ingredients. Write $(-)^{(-)} : Cat^{op} \times Cat \to Cat$ for the [[internal hom]] in [[Cat]], sending two categories $A$, $X$ to the [[functor category]] $X^A = Func(A,X)$. By the discussion at [[nerve]] we have a canonical functor \begin{displaymath} \Delta \hookrightarrow Cat \end{displaymath} including the [[simplex category]] into [[Cat]] by regarding the [[simplex]] $\Delta[n]$ as the category generated from $n$ consecutive morphisms. The [[nerve]] itself is then then functor \begin{displaymath} N : Cat \to sSet \end{displaymath} to [[sSet]] sending a category $C$ to \begin{displaymath} N(C) : k \mapsto C^{\Delta[k]} \,. \end{displaymath} Its restriction along $Grpd \hookrightarrow Cat$ to [[groupoids]] lands in [[Kan complexes]] $KanCplx \hookrightarrow$ [[sSet]]. The [[core]] operation is the functor \begin{displaymath} Core : Cat \to Grpd \end{displaymath} [[right adjoint]] to the inclusion of [[Grpd]] into [[Cat]]. It sends a category to the groupoid obtained by discarding all non-invertible morphisms. \hypertarget{the_construction}{}\paragraph*{{The construction}}\label{the_construction} Let $C$ be a [[small category]]. Define \begin{displaymath} \mathbf{C} \in [\Delta^{op}, sSet] \end{displaymath} by \begin{displaymath} \mathbf{C}_k := N(Core(C^{\Delta[k]})) \,. \end{displaymath} In degree 0 this is the the [[core]] of $C$ itself. In degree 1 it is the groupoid $\mathbf{C}_1$ underlying the [[arrow category]] of $C$. One sees that the [[source]] and [[target]] functors $s, t : C^{\Delta[1]} \to C$ are [[isofibrations]] and hence their image under [[core]] and [[nerve]] are [[Kan fibrations]]. Therefore it follows that the [[homotopy pullback]] (see there) $\mathbf{C}_1 \times_{\mathbf{C}_0} \cdots \times_{\mathbf{C}_0} \mathbf{C}_1$ is given already be the ordinary [[pullback]] in the [[1-category]] [[Grpd]]. Using this, it is immediate that for all $k$ the functors \begin{displaymath} Core(C^{\Delta[k]}) \to Core(C^{\Delta[1]}) \times_{Core(C)} \cdots \times_{Core(C)} Core(C^{\Delta[1]}) \end{displaymath} are [[isomorphisms]], and so in particular \begin{displaymath} \mathbf{C}_k \to \mathbf{C}_1 \times_{\mathbf{C}_0} \cdots \times_{\mathbf{C}_0} \mathbf{C}_1 \end{displaymath} is an equivalence. It is clear that the [[composition]] operation in the complete Segal space defined this way ``is'' the composition in $C$. In particular the morphisms that are invertible under this composition are precisely those that are already invertible in $C$. Therefore we have the core simplicial object \begin{displaymath} Core(\mathbf{C}) : k \mapsto N(Core(C)^{\Delta[k]}) = N(Core(C))^{\Delta[k]} \,, \end{displaymath} where, note, now we \emph{first} take the core of $C$ and then form morphism categories. This simplicial Kan complex has in each positive degree a [[path space object]] for the [[Kan complex]] $N(Core(C))$. Notably (since $\Delta[k]$ is [[weak homotopy equivalence|weak homotopy equivalent]] to the point) it follows that indeed all the face and degeneracy maps are weak homotopy equivalences. So for every category $C$, the simplicial object $\mathbf{C}$ constructed as above is a complete Segal space. This construction extends to a functor $Cat \to completeSegalSpace$ and this is homotopy full and faithful. \hypertarget{PropertiesOfTheInclusionOfCategories}{}\paragraph*{{Properties of the inclusion}}\label{PropertiesOfTheInclusionOfCategories} Write \begin{displaymath} Sing_J : Cat \to [\Delta^{op}, sSet] \end{displaymath} for the functor just defined \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ two categories, there are [[natural isomorphisms]] \begin{displaymath} Sing_J(C \times D) \simeq Sing_J(C) \times Sing_J(D) \end{displaymath} and \begin{displaymath} Sing_J(D^C) \simeq (Sing_J D)^{Sing_J C} \,. \end{displaymath} A functor $f : C \to D$ is an [[equivalence of categories]] precisely if $Sing_J(f)$ is an equivalence in the [[Reedy model structure]] $[\Delta^{op}, sSet]_{Reedy}$ (hence is degreewise a [[weak homotopy equivalence]] of Kan complexes). \end{prop} This appears as (\hyperlink{Rezk}{Rezk, theorem 3.7}). \hypertarget{RelativeCategoryAsCompleteSegalSpace}{}\subsubsection*{{Relative and Model categories as complete Segal spaces}}\label{RelativeCategoryAsCompleteSegalSpace} Let $C$ be a category with a class $W \subset Mor(C)$ of [[category with weak equivalences|weak equivalences]]. For instance, $C$ could be a [[model category]] or (much) more generally a ``[[relative category]]''. Then the \hyperlink{OrdinaryCategoriesAsCompleteSegalSpaces}{above} construction has the following evident variant. \begin{prop} \label{RelativeNerve}\hypertarget{RelativeNerve}{} Let $N(C,W) \in [\Delta^{op}, sSet]$ be given by \begin{displaymath} N(C,W) : n \mapsto N(Core_W(C^{\Delta[n]})) \,, \end{displaymath} where now $Core_W(-)$ denotes the [[subcategory]] on those [[natural transformations]] whose components are [[weak equivalences]] in $C$. \end{prop} \begin{remark} \label{}\hypertarget{}{} The typical [[model category]] is not a [[small category]] with respect to the base choice of [[universe]]. In this case $N(C,W)$ will be a ``[[large set|large]]'' bisimplicial set. In other words, one needs to employ some [[universe enlargement]] to interpret this definition. \end{remark} \begin{remark} \label{}\hypertarget{}{} If $C$ is a model category, then $Core_W(C^{\Delta[n]})$ is the subcategory of weak equivalences in any of the standard [[model structures on functors]] on $C^{\Delta[n]}$. By a \href{/nlab/show/%28infinity%2C1%29-categorical+hom-space#SpacesOfEquivalences}{classical fact} discssed at \emph{[[(∞,1)-categorical hom-space]]}, its [[nerve]] is a model for the [[core]] of the corresponding [[(∞,1)-category of (∞,1)-functors]]. \end{remark} The bisimplicial set $N(C,W)$ is not, in general, a complete Segal space. It does, however, represent the same [[(∞,1)-category]] as the [[simplicial localization]] of $C$ at $W$; see \href{http://mathoverflow.net/questions/92916/does-the-classification-diagram-localize-a-category-with-weak-equivalences/93139}{this MO question}. We can, of course, always reflect $N(C,W)$ into a complete Segal space by passing to a [[fibrant replacement]] in the [[model structure for complete Segal spaces]]. But something better is true here: it suffices to make a \emph{[[Reedy model structure|Reedy]] fibrant} replacement (which does not change the [[homotopy type]] of the simplicial sets $N(Core_W(C^{\Delta[n]}))$, but only ``arranges them more nicely''). \begin{prop} \label{}\hypertarget{}{} Any [[Reedy model structure|Reedy fibrant replacement]] of $N(C,W)$ is a complete Segal space. \end{prop} This is (\hyperlink{Rezk}{Rezk, theorem 8.3}). \hypertarget{QuasiCategoriesAsCompleteSegal}{}\subsubsection*{{Quasi-categories as complete Segal spaces}}\label{QuasiCategoriesAsCompleteSegal} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \Delta_J : \Delta \to sSet \end{displaymath} for the [[cosimplicial object|cosimplicial]] [[simplicial set]] that sends $[n]$ to the [[nerve]] of the [[codiscrete groupoid]] on $n+1$ objects \begin{displaymath} \Delta_J[n] = N(0 \stackrel{\simeq}{\to} \cdots \stackrel{\simeq}{\to} n) \,. \end{displaymath} Write \begin{displaymath} Sing_J : sSet \to [\Delta^{op}, sSet] \end{displaymath} for the functor given by \begin{displaymath} Sing_J(X)_n = Hom_{sSet}(\Delta[n] \times \Delta_J[\bullet], X) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} For $X \in sSet$ a [[quasi-category]]/[[inner Kan complex]], $Sing_J(X)$ is a complete Segal space. \end{prop} See at \emph{[[model structure for dendroidal complete Segal spaces]]} the section \emph{\href{model+structure+for+dendroidal+complete+Segal+spaces#QuasiOperadsToDendroidalCompleteSegal}{Quasi-operads to dendroidal complete Segal spaces}} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semi-Segal space]], [[Segal space]] \item [[model structure for complete Segal spaces]] \item [[higher complete Segal space]], [[dendroidal complete Segal space]] \item [[table - models for (infinity,1)-operads]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Complete Segal spaces were originally defined in \begin{itemize}% \item [[Charles Rezk]], \emph{A model for the homotopy theory of homotopy theory} , Trans. Amer. Math. Soc., 353(3), 973-1007 (\href{http://www.math.uiuc.edu/~rezk/rezk-ho-models-final-changes.pdf}{pdf}) \end{itemize} The relation to [[quasi-categories]] is discussed in \begin{itemize}% \item [[André Joyal]], [[Myles Tierney]], \emph{Quasi-categories vs Segal spaces} (\href{http://arxiv.org/abs/math/0607820}{arXiv:0607820}) \end{itemize} Further discussion of the relation to [[simplicial localization]] is in \begin{itemize}% \item [[Julia Bergner]], \emph{Complete Segal spaces arising from simplicial categories} (\href{http://arxiv.org/abs/0704.1624}{arXiv:0704.1624}) \end{itemize} A survey of the definition and its relation to equivalent definitions is in section 4 of \begin{itemize}% \item [[Julia Bergner]], \emph{A survey of $(\infty, 1)$-categories} (\href{http://arxiv.org/abs/math.AT/0610239}{arXiv}). \end{itemize} See also pages 29 to 31 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} For literature on the variants and refinements see at \emph{[[Theta space]]} and \emph{[[n-fold complete Segal space]]}. Related MathOverflow discussion includes \begin{itemize}% \item \href{http://mathoverflow.net/q/92916/381}{Does the classification diagram localize a category with weak equivalences?} \end{itemize} \hypertarget{ReferencesGroupoidalVersion}{}\subsubsection*{{Groupoidal version}}\label{ReferencesGroupoidalVersion} The groupoidal version of complete Segal spaces (that modelling just [[groupoid objects in an (∞,1)-category]] instead of general [[category objects in an (∞,1)-category]]) is discussed in \begin{itemize}% \item [[Julia Bergner]], \emph{Adding inverses to diagrams encoding algebraic structures}, Homology, Homotopy Appl. 10(2), 2008, 149-174 (\href{http://arxiv.org/abs/math/0610291}{arXiv:math/0610291}) \item [[Julia Bergner]], \emph{Adding inverses to diagrams II: Invertible homotopy theories are spaces}, Homology, Homotopy and Applications, vol. 10(1) 2008 (\href{http://www.math.ucr.edu/~jbergner/Groupoid.pdf}{pdf}) \end{itemize} [[!redirects complete Segal spaces]] [[!redirects Rezk category]] [[!redirects Rezk categories]] \end{document}