\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complete space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{complete_spaces}{}\section*{{Complete spaces}}\label{complete_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{completion}{Completion}\dotfill \pageref*{completion} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_compact_spaces}{Relation to compact spaces}\dotfill \pageref*{relation_to_compact_spaces} \linebreak \noindent\hyperlink{relation_to_baire_spaces}{Relation to Baire spaces}\dotfill \pageref*{relation_to_baire_spaces} \linebreak \noindent\hyperlink{generalization}{Generalization}\dotfill \pageref*{generalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[space]] (with ``space'' taken in a sense relevant to the field of [[topology]]) is \emph{complete} (or \emph{Cauchy-complete}) if every [[sequence]], [[net]], or [[filter]] that should converge really does [[convergence|converge]]. We identify the sequences, nets, or filters that ``should'' converge as the \emph{[[Cauchy sequence|Cauchy]]} ones. A space that is not complete has ``gaps'' that may be filled to form its \emph{completion}; it is rather natural to make the space (or equivalently its underlying topological space) [[Hausdorff space|Hausdorff]] at the same time. Forming the completion of a Hausdorff space is an important example of [[completion]] in the general abstract sense. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A space (which may be a [[metric space]], a [[Cauchy space]], or anything in between) is \textbf{Cauchy-complete}, or simply \textbf{complete}, if every [[Cauchy filter]] converges, equivalently if every [[Cauchy net]] converges. A space is \textbf{sequentially complete} if every [[Cauchy sequence]] converges. Note that a sequentially complete metric space must be complete (in [[classical mathematics]]), but this does not hold for more general spaces (nor even for metric spaces in [[constructive mathematics]]). A space is \textbf{topologically complete} if its [[underlying topological space]] is completely [[metrizable space|metrizable]]. There are various other notions related to this. See [[topologically complete space]]. \hypertarget{completion}{}\subsection*{{Completion}}\label{completion} The set $\mathcal{C}X$ of Cauchy filters on a space $X$ may generally be given the same sort of structure as $X$ itself has, and this space will be complete. Exactly how to do this depends on what structure $X$ is supposed to have, of course, and one can make the general statement false by requiring something artificial as the structure in question, most extremely the structure of being a specific non-complete space. But it works for most natural categories of spaces. The general idea is this: every point in $X$ generates a principal [[ultrafilter]] (consisting of those sets to which the point belongs), so there is a natural map from $X$ to $\mathcal{C}X$. Furthermore, this map is a morphism of the appropriate structure, which in particular makes it [[Cauchy-continuous map|Cauchy-continuous]] (preserving Cauchy filters) and continuous (preserving limits). So all of the limits in $X$ still exist in $\mathcal{C}X$, but now each Cauchy filter in $X$ (having become both a Cauchy filter in $\mathcal{C}$ and a point in $\mathcal{C}$) has a limit as well. The additional Cauchy filters based on the additional points in $\mathcal{C}X$ will also have a limit in $\mathcal{C}X$, essentially because $\mathcal{C}$ is a [[monad]] (so a Cauchy filter of Cauchy filters folds into a single Cauchy filter). There is a problem that $\mathcal{C}X$ is rather larger than necessary; for example, all of the filters that converge to a given point in $X$ (not just the free ultrafilter at that point) exist in $\mathcal{C}X$ and converge to one another. But you can take a [[quotient space|quotient]] of $\mathcal{C}X$ to make it Hausdorff, obtaining the \textbf{Hausdorff completion} of $X$. In case $X$ was not Hausdorff to begin with, one can sometimes also force the quotient to leave in just as much redundancy as $X$ has but no more, obtain a straight \textbf{completion} of $X$. But really, it's most natural to make the space Hausdorff at the same time. Details to come, if I get around to it. We have a picture like this, where $X$ is the original space, $\mathcal{H}$ gives a Hausdorff quotient, and an overline indicates completion: \begin{displaymath} \array { & & \overline{X} \\ & \hookrightarrow & & ↠ \\ X & & & & \mathcal{H}\overline{X} \cong \overline{\mathcal{H}X} \\ & ↠ & & \hookrightarrow \\ & & \mathcal{H}X } \end{displaymath} (Here the arrows are drawn horizontally to put styles on them; they should all be diagonal in the only possible way.) At least if $X$ is a [[metric space]], then we can also construct its completion as a [[locale]], the [[localic completion]], whose spatial part is the above space, but which in [[constructive mathematics]] may not be spatial. This is useful to have even if $X$ is already complete. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_compact_spaces}{}\subsubsection*{{Relation to compact spaces}}\label{relation_to_compact_spaces} A [[compact space]] is necessarily complete. A space is called \textbf{precompact} if its completion is compact. For metric spaces (or even [[uniform spaces]]), there is a natural notion of a [[totally bounded space]]; in [[classical mathematics]], we have the theorem that a space is totally bounded if and only if it is precompact. Similarly, a space is compact if and only if it is both complete and totally bounded (or in [[constructive mathematics]], both complete and precompact). Thus the purely topological property of compactness is the conjunction of the nontopological properties of completeness and total boundedness. In some [[constructive analysis|constructive approaches to analysis]] (including most of Brouwer's school and some of Bishop's school), `complete and totally bounded' is taken as the \emph{definition} of `compact', because it holds of examples such as the [[unit interval]] that fail to be compact (in the usual sense) without the [[fan theorem]]. However, in this case, compactness is no longer a [[topological property]]; see [[Bishop-compact space]] for more information. This is reconciled somewhat with the theory of [[localic completion]], in which a uniform space is totally bounded if and only if its localic completion is compact (in the usual sense). \hypertarget{relation_to_baire_spaces}{}\subsubsection*{{Relation to Baire spaces}}\label{relation_to_baire_spaces} Every complete metric space is a [[Baire space]]. Since being a Baire space is a [[topological property]], it follows that every [[topologically complete space]] is a Baire space. Are there (necessarily nonmetrizable) complete uniform spaces that are not Baire spaces? There is also a topological property of [[Cech-complete space|Čech-completeness]] that is related to this; in particular, a metric space is ech-complete if and only if it is complete, and every ech-complete space is a Baire space. In general, we have these proper implications: topologically complete $\rightarrow$ ech-complete $\rightarrow$ Baire. \hypertarget{generalization}{}\subsection*{{Generalization}}\label{generalization} When [[Bill Lawvere]] interpreted (in \hyperlink{Lawvere1973}{Lawvere 1973}) [[metric spaces]] as certain [[enriched categories]], he found that a metric space was complete if and only if every [[adjunction]] of [[bimodules]] over the enriched category is induced by an [[enriched functor]]. Accordingly, this becomes the notion of [[Cauchy-complete category]]. (Note that one \emph{must} say `Cauchy' here, since this is \emph{weaker} than being a [[complete category]], which is based on an incompatible analogy.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item a complete [[normed vector space]] is a \emph{[[Banach space]]} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item A.V. Arkhangel$\prime$skii (1977). \emph{Complete space}. Matematicheskaya entsiklopediya. \href{https://www.encyclopediaofmath.org/index.php/Complete_space}{Updated English version}. \item [[Bill Lawvere]] (1973). \emph{Metric spaces, generalized logic and closed categories}. Reprinted in [[TAC]], 1986. \href{http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html}{Web}. \end{itemize} [[!redirects complete space]] [[!redirects complete spaces]] [[!redirects Cauchy complete space]] [[!redirects Cauchy complete spaces]] [[!redirects Cauchy-complete space]] [[!redirects Cauchy-complete spaces]] [[!redirects completion of a space]] [[!redirects completion of spaces]] [[!redirects completions of spaces]] [[!redirects Cauchy completion]] [[!redirects Cauchy completions]] [[!redirects Cauchy-completion]] [[!redirects Cauchy-completions]] [[!redirects complete metric space]] [[!redirects complete metric spaces]] [[!redirects Cauchy complete metric space]] [[!redirects Cauchy complete metric spaces]] [[!redirects Cauchy-complete metric space]] [[!redirects Cauchy-complete metric spaces]] [[!redirects completion of a metric space]] [[!redirects completion of metric spaces]] [[!redirects completions of metric spaces]] [[!redirects Cauchy completion of a metric space]] [[!redirects Cauchy completion of metric spaces]] [[!redirects Cauchy completions of metric spaces]] [[!redirects Cauchy-completion of a metric space]] [[!redirects Cauchy-completion of metric spaces]] [[!redirects Cauchy-completions of metric spaces]] [[!redirects complete metric]] [[!redirects complete metrics]] [[!redirects Cauchy complete metric]] [[!redirects Cauchy complete metrics]] [[!redirects Cauchy-complete metric]] [[!redirects Cauchy-complete metrics]] [[!redirects completion of a metric]] [[!redirects completion of metrics]] [[!redirects completions of metrics]] [[!redirects Cauchy completion of a metric]] [[!redirects Cauchy completion of metrics]] [[!redirects Cauchy completions of metrics]] [[!redirects Cauchy-completion of a metric]] [[!redirects Cauchy-completion of metrics]] [[!redirects Cauchy-completions of metrics]] [[!redirects metric completion]] [[!redirects metric completions]] [[!redirects complete uniform space]] [[!redirects complete uniform spaces]] [[!redirects Cauchy complete uniform space]] [[!redirects Cauchy complete uniform spaces]] [[!redirects Cauchy-complete uniform space]] [[!redirects Cauchy-complete uniform spaces]] [[!redirects completion of a uniform space]] [[!redirects completion of uniform spaces]] [[!redirects completions of uniform spaces]] [[!redirects Cauchy completion of a uniform space]] [[!redirects Cauchy completion of uniform spaces]] [[!redirects Cauchy completions of uniform spaces]] [[!redirects Cauchy-completion of a uniform space]] [[!redirects Cauchy-completion of uniform spaces]] [[!redirects Cauchy-completions of uniform spaces]] [[!redirects uniform completion]] [[!redirects uniform completions]] [[!redirects complete Cauchy space]] [[!redirects complete Cauchy spaces]] [[!redirects Cauchy complete Cauchy space]] [[!redirects Cauchy complete Cauchy spaces]] [[!redirects Cauchy-complete Cauchy space]] [[!redirects Cauchy-complete Cauchy spaces]] [[!redirects completion of a Cauchy space]] [[!redirects completion of Cauchy spaces]] [[!redirects completions of Cauchy spaces]] [[!redirects Cauchy completion of a Cauchy space]] [[!redirects Cauchy completion of Cauchy spaces]] [[!redirects Cauchy completions of Cauchy spaces]] [[!redirects Cauchy-completion of a Cauchy space]] [[!redirects Cauchy-completion of Cauchy spaces]] [[!redirects Cauchy-completions of Cauchy spaces]] \end{document}