\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{completely distributive lattice} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{algebraic_lattices}{Algebraic lattices}\dotfill \pageref*{algebraic_lattices} \linebreak \noindent\hyperlink{completely_distributive_boolean_algebras}{Completely distributive Boolean algebras}\dotfill \pageref*{completely_distributive_boolean_algebras} \linebreak \noindent\hyperlink{constructive_complete_distributivity}{Constructive complete distributivity}\dotfill \pageref*{constructive_complete_distributivity} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{links}{Links}\dotfill \pageref*{links} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{completely distributive lattice} is a [[complete lattice]] $L$ in which arbitrary [[joins]] and arbitrary meets [[distributive lattice|distribute]] over each other. More formally: given a complete lattice $L$ and functions $p: J \to I$ and $f: J \to L$, we have \begin{displaymath} \bigwedge_{i \in I} \bigvee_{j \in p^{-1}(i)} f(j) \geq \bigvee_{sections\; s: I \to J} \bigwedge_{i \in I} f(s(i)) \end{displaymath} where ``section'' means [[section]] of $p$. Complete distributivity states that this inequality is an equality, for all $f, p$. The same statement then holds upon switching $\bigwedge$ and $\bigvee$, i.e., complete distributivity is a [[duality|self-dual]] property. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{algebraic_lattices}{}\subsubsection*{{Algebraic lattices}}\label{algebraic_lattices} \begin{prop} \label{}\hypertarget{}{} The category of [[Alexandroff locales]] is equivalent to that of completely distributive [[algebraic lattice|algebraic lattices]]. \end{prop} This appears as remark 4.3 in (\hyperlink{Caramello11}{Caramello 2011}). \hypertarget{completely_distributive_boolean_algebras}{}\subsubsection*{{Completely distributive Boolean algebras}}\label{completely_distributive_boolean_algebras} \begin{lemma} \label{}\hypertarget{}{} A complete totally ordered poset is completely distributive. \end{lemma} \begin{proof} (Note: this uses the [[axiom of choice]].) Suppose we had a strict inequality \begin{displaymath} \bigwedge_{i \in I} \bigvee_{j \in p^{-1}(i)} f(j) \gt \bigvee_{sections\; s: I \to J} \bigwedge_{i \in I} f(s(i)). \end{displaymath} Denote the left side by $x$ and the right by $y$. Either there is no element $z$ strictly between $x$ and $y$, or there is. In the former case, we have for each $i$ that $\bigvee_{j \in p^{-1}(i)} f(j) \geq x$, and so (using trichotomy) we have $f(j) \gt y$ for some $j \in p^{-1}(i)$. Choosing such a $j$ for each $i$, we obtain a section $s$ with $f(s(i)) \gt y$ for all $y$, whence $f(s(i)) \geq x$ for this case, so that $\bigvee_{sections\; s: I \to J} \bigwedge_{i \in I} f(s(i)) \geq x \gt y$, contradiction. If there is $z$ with $x \gt z \gt y$, we argue similarly to obtain a section $s$ with $f(s(i)) \gt z$ for all $i$, whence $\bigwedge_{i \in I} f(s(i)) \geq z$, and we obtain a contradiction as before with $z$ replacing $x$. \end{proof} \begin{prop} \label{}\hypertarget{}{} A complete Boolean algebra $B$ is completely distributive iff it is atomic (a [[CABA]]), i.e., is a [[power set]] as a Boolean algebra. \end{prop} \begin{proof} For a complete atomic Boolean algebra $B$, it is classical that the canonical map $B \to P(atoms(B))$, sending each $b \in B$ to the set of [[atoms]] below it, is an isomorphism. Such [[power sets]] are products of copies of $\mathbf{2} = \{0 \leq 1\}$, which is completely distributive by the lemma, and [[products]] of completely distributive lattices are completely distributive. In the other direction, suppose $B$ is completely distributive. Take $p = \pi_2: \mathbf{2} \times B \to B$, and $\alpha: \mathbf{2} \times B \to B$ by $\alpha(0, b) \coloneqq \neg b$ and $\alpha(1, b) \coloneqq b$. Sections of $p$ correspond to functions $g: B \to \mathbf{2}$, and so complete distributivity gives \begin{displaymath} 1 = \bigwedge_{b \in B} (b \vee \neg b) = \bigvee_{g: B \to \mathbf{2}} \bigwedge_{b \in B} \alpha(g(b), b). \end{displaymath} Write $a(g)$ as abbreviation for $\bigwedge_{b \in B} \alpha(g(b), b)$, we have \begin{displaymath} b = b \wedge 1 = b \wedge \bigvee_{g: B \to \mathbf{2}} a(g) = \bigvee_{g: B \to \mathbf{2}} b \wedge a(g) \end{displaymath} so $b \wedge a(g) \neq 0$ for some $g$ if $b \neq 0$. Notice that $b \wedge a(g) \neq 0$ implies $g(b) = 1$, from which we infer two things: \begin{itemize}% \item Whenever $b \leq a(g)$ with $b \neq 0$, then $a(g) \leq \alpha(g(b), b) = \alpha(1, b) = b$; therefore $a(g)$ is an atom whenever $a(g) \neq 0$; \item Provided that $b \wedge a(g) \neq 0$, the preceding point gives that $a(g)$ is an atom below $b \wedge a(g) \leq b$. \end{itemize} The last point shows every element $b$ has an atom $a(g)$ below it, so that $B$ is atomic, as was to be shown. \end{proof} \hypertarget{constructive_complete_distributivity}{}\subsubsection*{{Constructive complete distributivity}}\label{constructive_complete_distributivity} A complete lattice $A$ is called \textbf{constructively completely distributive} (CCD) if the join-assigning morphism $D A \to A$ has a left adjoint, with $D A$ the poset of [[downsets]]. \emph{Constructive complete distributivity is equivalent to complete distributivity if and only if the [[axiom of choice]] holds} (\hyperlink{WoodFawcett}{Wood\&Fawcett (1990)}). Constructively completely distributive lattices are an example of [[continuous algebras]] for a [[lax-idempotent 2-monad]]. \hypertarget{remark}{}\subsubsection*{{Remark}}\label{remark} Completely distributive lattices correspond to tight [[Galois connections]] (Raney 1953). This generalizes to a correspondence between totally distributive toposes and [[essential geometric morphism|essential localizations]] (Lucyshyn-Wright 2011). CCD lattices are precisely the [[nuclear objects]] in the category of complete lattices. The (bi-) category $\mathfrak{CCD}$ with CCD lattices and sup-preserving maps is the [[Karoubi envelope|idempotent splitting]] of the (bi-) category of relations $\mathfrak{Rel}$. This plays an important role in \emph{[[domain]]-theoretical} approaches to the semantics of [[linear logic]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[continuous lattice]] \item [[totally distributive category]] \end{itemize} \hypertarget{links}{}\subsection*{{Links}}\label{links} \begin{itemize}% \item wikipedia-entry: \href{http://en.wikipedia.org/wiki/Completely_distributive_lattice}{completely distributive lattice} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Olivia Caramello]], \emph{A topos-theoretic approach to Stone-type dualities} , ms. 2011. (\href{http://arxiv.org/abs/1103.3493}{arXiv:1103.3493}) \end{itemize} \begin{itemize}% \item B. Fawcett, R. J. Wood, \emph{Constructive complete distributivity I} , Math. Proc. Camb. Phil. Soc. \textbf{107} (1990) pp.81-89. \end{itemize} \begin{itemize}% \item R. Guitart, J. Riguet, \emph{Enveloppe Karoubienne de Cat\'e{}gories de Kleisli} , Cah. Top. Geom. Diff. Cat. \textbf{XXXIII} no.3 (1992) pp.261-266. (\href{http://archive.numdam.org/article/CTGDC_1992__33_3_261_0.pdf}{pdf}) \item [[Rory Lucyshyn-Wright|R. Lucyshyn-Wright]], \emph{Totally Distributive Toposes} , arXiv.1108.4032 (2011). (\href{http://arxiv.org/pdf/1108.4032v3}{pdf}) \item G. N. Raney, \emph{Tight Galois Connections and Complete Distributivity} , Trans.Amer.Math.Soc \textbf{97} (1960) pp.418-426. (\href{http://www.ams.org/journals/tran/1960-097-03/S0002-9947-1960-0120171-3/S0002-9947-1960-0120171-3.pdf}{pdf}) \item R. Rosebrugh, R. J. Wood, \emph{Constructive complete distributivity IV} , App. Cat. Struc. \textbf{2} (1994) pp.119-144. (\href{http://www.mta.ca/~rrosebru/articles/ccd4.pdf}{preprint}) \item [[Isar Stubbe|I. Stubbe]], \emph{Towards ``Dynamic Domains'': Totally Continuous Complete Q-Categories} , Theo. Comp. Sci. \textbf{373} no.1-2 (2007) pp.142-160. \end{itemize} [[!redirects completely distributive lattices]] [[!redirects constructive completely distributive lattice]] [[!redirects constructively completely distributive lattice]] [[!redirects constructively completely distributive lattices]] [[!redirects constructive completely distributive lattices]] [[!redirects CCD lattice]] \end{document}