\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{completion of a module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{formal_geometry}{}\paragraph*{{Formal geometry}}\label{formal_geometry} [[!include formal geometry -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_modules_over_a_commutative_ring}{For modules over a commutative ring}\dotfill \pageref*{for_modules_over_a_commutative_ring} \linebreak \noindent\hyperlink{for_modules_over_an_ring}{For $\infty$-modules over an $E_\infty$-ring}\dotfill \pageref*{for_modules_over_an_ring} \linebreak \noindent\hyperlink{TorsionApproximation}{Torsion approximation}\dotfill \pageref*{TorsionApproximation} \linebreak \noindent\hyperlink{Localization}{Localization}\dotfill \pageref*{Localization} \linebreak \noindent\hyperlink{completion}{Completion}\dotfill \pageref*{completion} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general_properties}{General properties}\dotfill \pageref*{general_properties} \linebreak \noindent\hyperlink{Monoidalness}{Monoidalness}\dotfill \pageref*{Monoidalness} \linebreak \noindent\hyperlink{relation_to_localization}{Relation to localization}\dotfill \pageref*{relation_to_localization} \linebreak \noindent\hyperlink{RelationToTorsionApproximation}{Relation of formal completion to torsion approximation}\dotfill \pageref*{RelationToTorsionApproximation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Directly analogous to the concept of [[completion of a ring]] is the \emph{completion of a module} over that ring. In particular the [[formal completion]] or \emph{adic completion} of a ring $A$ at an ideal $\mathfrak{a}$ has a corresponding analog for modules. Where the adic completion $A_{\mathfrak{a}}^\wedge$ of the ring itself has the geometric interpretation of forming the [[formal neighbourhood]] $Spf(A_{\mathfrak{a}}^\wedge)$ of [[spectrum of a commutative ring|ring spectra]] $Spec(A/\mathfrak{a}) \hookrightarrow Spec(A)$, so under the interpretation (see \href{module#RelationToVectorBundlesInIntroduction}{here}) of $A$-[[modules]] as [[bundles]] over $Spec(A)$, the $\mathfrak{a}$-adic completion $N_{\mathfrak{a}}^\wedge$ of an $A$-module $N$ has the interpretation of being the restriction of that bundle to that formal neighbourhood. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_modules_over_a_commutative_ring}{}\subsubsection*{{For modules over a commutative ring}}\label{for_modules_over_a_commutative_ring} \begin{defn} \label{TraditionalDefinition}\hypertarget{TraditionalDefinition}{} For $A$ a [[commutative ring]], $\mathfrak{a} \subset A$ an ideal in $A$ and for $N$ an $A$-[[module]], then the \emph{$\mathfrak{a}$-adic completion} or \emph{formal completion at $\mathfrak{a}$} of $N$ is the [[filtered limit]] \begin{displaymath} N^{\wedge}_{\mathfrak{a}} \coloneqq \underset{\leftarrow}{\lim}_n N/(\mathfrak{a}^n N) \end{displaymath} of [[quotients]] of $N$ by the submodules induced by all powers of the ideal. \end{defn} There is a canonical projection map $N \longrightarrow N^\wedge_{\mathfrak{a}}$. Its [[kernel]] is sometimes called the $\mathfrak{a}$-[[adic residual]]. \hypertarget{for_modules_over_an_ring}{}\subsubsection*{{For $\infty$-modules over an $E_\infty$-ring}}\label{for_modules_over_an_ring} Let $A$ be an [[E-∞ ring]] and $\mathfrak{a} \subset \pi_0 A$ a [[generators and relations|finitely generated]] ideal of its underlying [[commutative ring]]. \hypertarget{TorsionApproximation}{}\paragraph*{{Torsion approximation}}\label{TorsionApproximation} \begin{defn} \label{TorsionInfinityModule}\hypertarget{TorsionInfinityModule}{} An $A$-[[∞-module]] $N$ is an \emph{$\mathfrak{a}$-torsion module} if for all elements $n \in \pi_k N$ and all elements $a \in \mathfrak{a}$ there is $k \in \mathbb{N}$ such that $a^k n = 0$. \end{defn} (\hyperlink{LurieCompletions}{Lurie ``Completions'', def. 4.1.3}). \begin{prop} \label{TorsionApproximation}\hypertarget{TorsionApproximation}{} The [[full sub-(∞,1)-category]] \begin{displaymath} A Mod_{\mathfrak{a}tor} \hookrightarrow A Mod \end{displaymath} is [[reflective sub-(∞,1)-category|co-reflective]] and the co-reflector $\Pi_{\mathfrak{a}}$ -- the \emph{[[torsion approximation]]} -- is [[smashing localization|smashing]]. \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', prop. 4.1.12}). \begin{prop} \label{}\hypertarget{}{} For $N \in A Mod_{\leq 0}$ then [[torsion approximation]], prop. \ref{TorsionApproximation}, intuced a [[monomorphism]] on $\pi_0$ \begin{displaymath} \pi_0 \Pi_{\mathfrak{a}} N \hookrightarrow \pi_0 N \end{displaymath} including the $\mathfrak{a}$-nilpotent elements of $\pi_0 N$. \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', prop. 4.1.18}). \hypertarget{Localization}{}\paragraph*{{Localization}}\label{Localization} \begin{defn} \label{LocalInfinityModule}\hypertarget{LocalInfinityModule}{} An $A$-[[∞-module]] $N$ is an \emph{$\mathfrak{a}$-local module} if for every $\mathfrak{a}$-torsion module $T$ (def. \ref{TorsionInfinityModule}), the [[derived hom space]] \begin{displaymath} Hom_A(T,N) \simeq \ast \end{displaymath} is contractible. \end{defn} (\hyperlink{LurieCompletions}{Lurie ``Completions'', def. 4.1.9}). \begin{prop} \label{LocalizationAwayByColimit}\hypertarget{LocalizationAwayByColimit}{} For $\mathfrak{a} = (a)$ generated from a single element, then the \href{localization+of+a+commutative+ring#ForEInfinityRings}{localization of an (∞,1)-ring}-map $A \to A[a^{-1}]$ is given by the [[(∞,1)-colimit]] over the sequence of right-multiplication with $a$ \begin{displaymath} A[a^{-1}] \simeq \underset{\rightarrow}{\lim} ( A \stackrel{\cdot a}{\longrightarrow} A \stackrel{\cdot a}{\longrightarrow} A \stackrel{\cdot a}{\longrightarrow} \cdots ) \,. \end{displaymath} \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', remark 4.1.11}) \begin{prop} \label{}\hypertarget{}{} The [[full sub-(∞,1)-category]] \begin{displaymath} A Mod_{\mathfrak{a}loc} \hookrightarrow A Mod \end{displaymath} of [[∞-modules]] [[localization of a module|local]] away from $\mathfrak{a}$ is [[reflective sub-(∞,1)-category|reflective]]. The reflector \begin{displaymath} \Pi_{\mathfrak{a}dR} \colon A Mod \longrightarrow A Mod_{\mathfrak{a}loc} \end{displaymath} is called \emph{[[localization of a module|localization]]}. \end{prop} \begin{prop} \label{}\hypertarget{}{} There is a [[natural transformation|natural]] [[homotopy fiber sequence]] \begin{displaymath} ʃ_{\mathfrak{a}} \longrightarrow id \longrightarrow ʃ_{\mathfrak{a}dR} \end{displaymath} relating $\mathfrak{a}$-torsion approximation on the left with $\mathfrak{a}$-[[localization of a module|localization]] on the right. \end{prop} \hypertarget{completion}{}\paragraph*{{Completion}}\label{completion} \begin{defn} \label{InfinityCompletion}\hypertarget{InfinityCompletion}{} An [[∞-module]] $N$ over $A$ is \emph{$\mathfrak{a}$-complete} if for all $\mathfrak{a}$-local $\infty$-modules $L$ (def. \ref{LocalInfinityModule}) then $Hom_A(L,N) \simeq \ast$. The [[full sub-(∞,1)-category]] \begin{displaymath} A Mod_{\mathfrak{a}comp} \hookrightarrow A Mod \end{displaymath} of the [[(∞,1)-category of ∞-modules]] on the $\mathbb{a}$-complete ones is a [[reflective sub-(∞,1)-category]]. The reflector \begin{displaymath} \flat_{\mathfrak{a}} \colon A Mod \longrightarrow A Mod_{\mathfrak{a}comp} \hookrightarrow A Mod \end{displaymath} \begin{displaymath} N \mapsto N^{\wedge}_{\mathfrak{a}} \end{displaymath} is called \emph{$\mathfrak{a}$-completion}. \end{defn} (\hyperlink{LurieCompletions}{Lurie ``Completions'', def. 4.2.1, lemma 4.2.2}). Definition \ref{InfinityCompletion} relates to the traditional definition, def. \ref{TraditionalDefinition}, as follows \begin{prop} \label{}\hypertarget{}{} Let $N$ a homotopically discrete [[∞-module]] over the [[E-∞ ring]] $A$ which is a [[Noetherian module]] in that all its submodules are finitely [[generators and relations|finitely generated]]. Then the $\mathfrak{a}$-completion of $N$ in the sense of def. \ref{InfinityCompletion} coincides with the traditional definition def. \ref{TraditionalDefinition}. \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', prop. 4.3.6}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general_properties}{}\subsubsection*{{General properties}}\label{general_properties} The [[full sub-(∞,1)-category]] $A Mod_{\mathfrak{a} comp}$ is a [[locally presentable (∞,1)-category]]. (\hyperlink{LurieCompletions}{Lurie ``Completions'', prop. 4.1.17}) \hypertarget{Monoidalness}{}\subsubsection*{{Monoidalness}}\label{Monoidalness} We discuss how both $\mathfrak{a}$-completion $\flat_{\mathfrak{a}}$ and $\mathfrak{a}$-[[torsion approximation]] $\Pi_{\mathfrak{a}}$ on $A Mod$ are [[monoidal (∞,1)-functors]] with respect to the [[smash product of spectra]] over $A$. Let $A$ be an [[E-∞ ring]] and $\mathfrak{a} \subset \pi_0 A$ a [[generators and relations|finitely generated]] ideal of its underlying [[commutative ring]]. \begin{prop} \label{}\hypertarget{}{} The completion reflection $\flat_{\mathfrak{a}}$, def. \ref{InfinityCompletion}, is a [[monoidal (∞,1)-functor]]. \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', remark 4.2.6}). For the torsion approximation functor $\Pi_{\mathfrak{a}}$ one gets something slightly weaker, it preserves ``monoids without unit'': \begin{prop} \label{}\hypertarget{}{} The [[full sub-(∞,1)-category]] of $\mathfrak{a}$-torsion modules, def. \ref{TorsionInfinityModule}, is [[reflective sub-(∞,1)-category|co-reflective]] \begin{displaymath} A Mod_{\mathfrak{a}tor} \stackrel{\hookrightarrow}{\underset{\Pi_{\mathfrak{a}}}{\longleftarrow}} A Mod \,. \end{displaymath} Moreover, the coreflector $\Pi_{\mathfrak{a}}$ is ``[[smashing localization|smashing]]'', in that there is $V \in A Mod$ such that $\Pi_{\mathfrak{a}}(-) \simeq V \wedge (-)$ is given by the [[smash product]] with $V$. If $\mathfrak{a} = (\{x_i\}_i)$ then $V$ is the [[tensor product]] $V =\underset{i}{\otimes} V_i$ over all the [[homotopy fibers]] \begin{displaymath} \Omega (A[x_i^{-1}]/A) \longrightarrow A \longrightarrow A[x_i^{-1}] \,. \end{displaymath} \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', prop. 4.1.12}). From the general properties of [[smashing localization]] it follows that \begin{cor} \label{}\hypertarget{}{} The coreflection $\Pi_{\mathfrak{a}} \colon A Mod \to A Mod$ \begin{enumerate}% \item preserves small [[(∞,1)-colimits]]; \item is a ``[[monoidal (∞,1)-functor]]'' except possibly for preservation of units. \end{enumerate} \end{cor} See also (\hyperlink{LurieCompletions}{Lurie ``Completions'', cor. 4.1.16}). \hypertarget{relation_to_localization}{}\subsubsection*{{Relation to localization}}\label{relation_to_localization} The [[homotopy cofiber]] of $\mathfrak{a}$-completion $\Pi_{\mathfrak{a}}$ is [[localization of a module|localization]] away from $\mathfrak{a}$, in that there is a [[homotopy fiber sequence]] \begin{displaymath} (-)_{\mathfrak{a}}^{\wedge} \to id \to (-)[\mathfrak{a}^{-1}] \end{displaymath} with the completion functor of def. \ref{InfinityCompletion} on the left and the localization functor of prop. \ref{LocalizationAwayByColimit} on the right. (\hyperlink{LurieCompletions}{Lurie ``Completions'', example 4.1.14, remark 4.1.20}) \hypertarget{RelationToTorsionApproximation}{}\subsubsection*{{Relation of formal completion to torsion approximation}}\label{RelationToTorsionApproximation} For suitable ideals $\mathfrak{a}\subset A$ of a commutative ring $A$ or more generally of an [[E-∞ ring]], then the [[derived functor]] of $\mathfrak{a}$-adic [[completion of a module|completion of A-modules]] forms together with $\mathfrak{a}$-[[torsion approximation]] an [[adjoint modality]] on the\newline [[(∞,1)-category of modules]] over $A$. See at \emph{[[fracture square]]} for details. [[!include arithmetic cohesion -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the context of [[higher algebra]] is in \begin{itemize}% \item [[Jacob Lurie]], section 4 of \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \end{itemize} Discussion of formal completion of [[(infinity,1)-modules]] in terms of [[totalization]] of [[Amitsur complexes]] is in \begin{itemize}% \item [[Gunnar Carlsson]], \emph{Derived completions in stable homotopy theory}, Journal of Pure and Applied Algebra Volume 212, Issue 3, March 2008, Pages 550--577 (\href{http://arxiv.org/abs/0707.2585}{arXiv:0707.2585}) \end{itemize} [[!redirects completions of a module]] [[!redirects completion of modules]] [[!redirects completions of modules]] [[!redirects formal completion of a module]] \end{document}