\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{completion of a ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{formal_geometry}{}\paragraph*{{Formal geometry}}\label{formal_geometry} [[!include formal geometry -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{ideas}{Ideas}\dotfill \pageref*{ideas} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{formaladic_completion_and_formal_neighbourhoods}{Formal/adic completion and formal neighbourhoods}\dotfill \pageref*{formaladic_completion_and_formal_neighbourhoods} \linebreak \noindent\hyperlink{derived_completion_functor}{Derived completion functor}\dotfill \pageref*{derived_completion_functor} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToTorsionApproximation}{Relation of formal completion to torsion approximation}\dotfill \pageref*{RelationToTorsionApproximation} \linebreak \noindent\hyperlink{as_modality_in_arithmetic_cohesion}{As modality in arithmetic cohesion}\dotfill \pageref*{as_modality_in_arithmetic_cohesion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{ideas}{}\subsection*{{Ideas}}\label{ideas} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Quite generally, the \emph{completion of a ring} is a [[completion]] of a [[topological ring]] to a [[complete space|complete]] [[topological ring]], when possible, for instance of a [[normed ring]] to a [[Banach ring]]. \hypertarget{formaladic_completion_and_formal_neighbourhoods}{}\subsubsection*{{Formal/adic completion and formal neighbourhoods}}\label{formaladic_completion_and_formal_neighbourhoods} A special case of ring completion is the \emph{formal completion} or \emph{adic completion} of a [[commutative ring]] $R$, which is its topological completion with respect to the [[adic topology]] induced by a [[maximal ideal]] $I\subset R$ (\hyperlink{Sullivan05}{Sullivan 05, definition 1.3}). The underlying ring $\widehat R_I$ of this formal completion is the [[limit]] \begin{displaymath} \widehat R_I \coloneqq \underset{\leftarrow}{\lim} (R/I^n) \end{displaymath} (formed in the [[category]] [[CRing]] of [[commutative rings]]) of the [[quotients]] of $R$ by all the [[powers]] of this ideal, $I$ (\hyperlink{Sullivan05}{Sullivan 05, proposition 1.13}). Notice that this may be considered purely algebraically. In words, this limit construction says that the elements of $R_I$ are sequences of elements in $R$ which ``successively add smaller and smaller elements, as seen by the ideal $I$''. This is as for [[formal power series]] rings, which are indeed the archetypical example of formal completions, see example \ref{FormalPowerSeries} below. Generally, the [[Isbell duality|dual]] [[geometry|geometric]] meaning of formal ring completion is in [[formal geometry]]: the proper [[spectrum (geometry)|geometric spectrum]] of a formally completed ring is known as a \emph{[[formal spectrum]]} $Spf(R,I)$. Geometrically this is the [[formal neighbourhood]] of the [[spectrum of a commutative ring|spectrum]] $Spec(R/I)$ inside $Spec(R)$. \begin{displaymath} Spec(R/I) \hookrightarrow Spf(\widehat R_I) \hookrightarrow Spec(R) \,. \end{displaymath} \hypertarget{derived_completion_functor}{}\subsubsection*{{Derived completion functor}}\label{derived_completion_functor} The [[derived functor]] of adic completion was originally discussed in (\hyperlink{GreenleesMay92}{Greenless-May 92} (``Greenlees-May duality''). For discussion of its relation to derived [[torsion subgroup]] functor see (\hyperlink{PortaShaulYekutieli10}{Porta-Shaul-Yekutieli 10}) and see at \emph{\href{http://ncatlab.org/nlab/show/fracture+theorem#CompletionAndTorsionOnDerivedCategories}{fracture theorem -- Arithmetic fracturing for chain complexes}}. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} The archetypical example which most clearly exhibits the [[geometry|geometric]] meaning of formal completions of rings is the following \begin{example} \label{FormalPowerSeries}\hypertarget{FormalPowerSeries}{} For $R$ any [[ring]] and $R[x]$ the [[polynomial ring]] with [[coefficients]] in $R$, then the formal completion of $R[x]$ at the ideal $(x)$ generated by the free generator $x$ is the ring of [[formal power series]] $R[ [x] ]$. If $R$ is a [[field]], then geometrically $Spec(R[x])$ is the [[affine line]] in [[algebraic geometry]]/[[arithmetic geometry]] over $R$, while $Spf(R[ [x] ])$ is the [[formal disk]] inside the affine line around the origin. \end{example} The key class of example of completions in [[non-archimedean analytic geometry]] is the following. \begin{example} \label{pAdicNumbers}\hypertarget{pAdicNumbers}{} The [[p-adic integers]] are the completion of the ring of [[integers]] at the [[prime ideal]] $(p) \subset \mathbb{Z}$. Similarly the [[p-adic rational numbers]] are the completion of the [[rational numbers]] $(p)$, and the [[p-adic complex numbers]] are the completion of the [[complex numbers]] at $(p)$. \end{example} \begin{remark} \label{}\hypertarget{}{} In view of the example \ref{FormalPowerSeries} one sees that the $p$-adic numbers in \ref{pAdicNumbers} are in fact [[analogy|analogous]] to [[formal power series]] rings, hence that they behave like [[function rings]] on [[formal disks]] in \emph{some} kind of geometry. This [[analogy]] is part of what is known as the [[function field analogy]], which says that the ring of [[integers]] $\mathbb{Z}$ behaves like the would-be ``ring of polynomials $\mathbb{F}_1[x]$ over [[F1]]''. \end{remark} \begin{example} \label{AtiyahSegalTheorem}\hypertarget{AtiyahSegalTheorem}{} The [[Atiyah-Segal completion theorem]] states that for $G$ a [[topological group]] and $X$ a [[G-space]], then the [[topological K-theory]] ring $K(X//G)$ of the [[homotopy quotient]] $X//G$ (of the [[Borel construction]]) is the completion of the $G$-[[equivariant K-theory]] ring of $X$. So this says that the ``very naive'' equivariant K-theory embodied by $K(X//G)$ is an infinitesimal approximation to the genuine equivariant K-theory. \end{example} \begin{example} \label{}\hypertarget{}{} The phenonemon of example \ref{AtiyahSegalTheorem} appears for other [[generalized cohomology theories]] too, such as [[complex cobordism]] (\hyperlink{GreenMay97}{GreenleesMay 97}). For [[complex oriented cohomology theories]] it says that the [[formal group]] assigned by these to $\ast//U(1)$ is to be thought of as the formal completion of a more globally defined something. One case where this ``something'' has been understood in some detail is that where the cohomology theory is [[elliptic cohomology]]. In that case the analog of equivariant K-theory is \emph{[[equivariant elliptic cohomology]]}, see there for more details. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToTorsionApproximation}{}\subsubsection*{{Relation of formal completion to torsion approximation}}\label{RelationToTorsionApproximation} For suitable ideals $\mathfrak{a}\subset A$ of a commutative ring $A$, then the [[derived functor]] of $\mathfrak{a}$-adic [[completion of a module|completion of A-modules]] forms together with $\mathfrak{a}$-[[torsion approximation]] an [[adjoint modality]] on the\newline [[(∞,1)-category of modules]] over $A$. See at \emph{\href{fracture+theorem#CompletionAndTorsionOnDerivedCategories}{arithmetic fracturing for chain complexes}} for details. \hypertarget{as_modality_in_arithmetic_cohesion}{}\subsubsection*{{As modality in arithmetic cohesion}}\label{as_modality_in_arithmetic_cohesion} [[!include arithmetic cohesion -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[analytic completion]] \item [[localization of a ring]], [[localization of a commutative ring]] \item [[completion of a module]] \item [[formal scheme]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A classical account is in section 1 of \begin{itemize}% \item [[Dennis Sullivan]], \emph{Geometric topology: localization, periodicity and Galois symmetry}, volume 8 of K- Monographs in Mathematics. Springer, Dordrecht, 2005. The 1970 MIT notes, Edited and with a preface by [[Andrew Ranicki]] (\href{http://www.maths.ed.ac.uk/~aar/books/gtop.pdf}{pdf}) \end{itemize} Brief surveys include \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Completion_%28ring_theory%29}{Completion (ring theory)}} \item Brett Bridges, \emph{An introduction to ring completions}, lecture notes 2011 (\href{http://www.math.uwo.ca/~srankin/courses/4123/2011/brett_presentation.pdf}{pdf}) \end{itemize} Discussion of the [[derived functor]] of adic completion (``Greenless-May duality'') is in \begin{itemize}% \item [[John Greenlees]], [[Peter May]], \emph{Derived functors of I-adic completion and local homology}, J. Algebra 149 (1992), 438--453 (\href{http://math.uchicago.edu/~may/PAPERS/73.pdf}{pdf}) \item Leovigildo Alonso, Ana Jerem\'i{}as, [[Joseph Lipman]], \emph{Local Homology and Cohomology on Schemes} (\href{http://arxiv.org/abs/alg-geom/9503025}{arXiv:alg-geom/9503025}) \item Marco Porta, Liran Shaul, [[Amnon Yekutieli]], \emph{On the Homology of Completion and Torsion} (\href{http://arxiv.org/abs/1010.4386}{arXiv:1010.4386}) \end{itemize} for more on this see also at \emph{\href{http://ncatlab.org/nlab/show/fracture+theorem#CompletionAndTorsionOnDerivedCategories}{fracture theorem -- Arithmetic fracturing for chain complexes}} Discussion of interrelation between completion and [[etale morphisms]] is in \begin{itemize}% \item Leovigildo Alonso, Ana Jeremias, Marta Perez, \emph{Local structure theorems for smooth maps of formal schemes} (\href{http://arxiv.org/abs/math/0605115}{arXiv:math/0605115}) \end{itemize} Discussion of formal completion of [[(infinity,1)-modules]] in terms of [[totalization]] of [[Amitsur complexes]] is in \begin{itemize}% \item [[Gunnar Carlsson]], \emph{Derived completions in stable homotopy theory} (\href{http://arxiv.org/abs/0707.2585}{arXiv:0707.2585}) \end{itemize} Completion for complex cobordism theory is in \begin{itemize}% \item [[John Greenlees]], [[Peter May]], \emph{Localization and Completion Theorems for MU-Module Spectra}, Annals of Mathematics Second Series, Vol. 146, No. 3 (Nov., 1997), pp. 509-544 \end{itemize} [[!redirects completion of a ring]] [[!redirects completion of rings]] [[!redirects completions of a ring]] [[!redirects completions of rings]] [[!redirects completion (ring theory)]] [[!redirects completion of a commutative ring]] [[!redirects completion of commutative rings]] [[!redirects formal completion of a ring]] [[!redirects formal completion of rings]] \end{document}