\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complex analytic ∞-groupoid} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{analytic_geometry}{}\paragraph*{{Analytic geometry}}\label{analytic_geometry} [[!include analytic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Cohesion}{Cohesion}\dotfill \pageref*{Cohesion} \linebreak \noindent\hyperlink{OkaPrinciple}{Oka principle}\dotfill \pageref*{OkaPrinciple} \linebreak \noindent\hyperlink{DifferentialCohomology}{Complex analytic differential generalized cohomology}\dotfill \pageref*{DifferentialCohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{multiplicative_group_and_holomorphic_line_bundles}{Multiplicative group and holomorphic line $n$-bundles}\dotfill \pageref*{multiplicative_group_and_holomorphic_line_bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{complex analytic $\infty$-groupoid} is an [[∞-groupoid]] equipped with [[higher geometry|geometric]] structure in the sense of [[complex analytic geometry]], such that [[complex analytic spaces]] constitute a [[full subcategory]] of the [[n-truncated object in an (∞,1)-topos|0-truncated]] complex analytic $\infty$-groupoids. Hence a complex analytic $\infty$-groupoid is an [[(∞,1)-sheaf]]/[[∞-stack]] on the [[site]] of [[complex manifolds]] (or some of its [[dense subsites]]). This is directly analogous to how [[(∞,1)-sheaves]] over the [[site]] of [[smooth manifolds]] may be regarded as \emph{[[smooth ∞-groupoids]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{TheSites}\hypertarget{TheSites}{} Write $CplxMfd$ for the [[category]] of [[complex manifolds]], regarded as a [[site]] with the standard [[Grothendieck topology]]. Write \begin{displaymath} \mathbb{C}Disc \hookrightarrow SteinSp \hookrightarrow CplxMfd \end{displaymath} for the [[full subcategories]] of [[Stein spaces]] and of complex [[polydiscs]], respectively, regarded as [[sites]] by equipping them with the induced [[coverages]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} The inclusions in def. \ref{TheSites} exhibit [[dense subsite]] inclusions. \end{prop} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \mathbb{C}Analytic\infty Grpd \coloneqq Sh_\infty(CplxMfd) \end{displaymath} for the [[hypercomplete (∞,1)-topos|hypercomplete]] [[(∞,1)-sheaf (∞,1)-topos]] over the sites of complex manifolds def. \ref{TheSites}. \end{defn} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[model structure on simplicial presheaves]]} this means that $\mathbb{C}Analytic\infty Grpd$ is equivalently the [[simplicial localization]] of any of the hypercomplete local model structures on simplicial (pre-)sheaves, such as the Joyal [[model structure on simplicial sheaves]]. \end{remark} This is considered in (\hyperlink{HopkinsQuick12}{Hopkins-Quick 12, section 2.1}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Cohesion}{}\subsubsection*{{Cohesion}}\label{Cohesion} \begin{prop} \label{Cohesion}\hypertarget{Cohesion}{} The [[global section geometric morphism]] \begin{displaymath} \Gamma \;\colon\; \mathbb{C}Analytic\infty Grpd \longrightarrow \infty Grpd \end{displaymath} exhibits a [[cohesive (∞,1)-topos]]. \end{prop} \begin{proof} We discuss the existence of the extra left adjoint $\Pi$ (the [[shape modality]]). This proceeds essentially as in the discussion of the [[cohesion]] of [[Smooth∞Grpd]] (see there) only that where there one may choose [[good open covers]] here we have to choose genuine [[split hypercovers]] by [[polydiscs]]. The rest of the proof is verbatim as for [[Smooth∞Grpd]]. To start with, since the [[hypercompletion]] depends only on the underlying [[sheaf topos]] of a site we may represent \begin{displaymath} \mathbb{C}Analytic\infty Grpd \simeq L_{lwhe} sPSh(\mathbb{C}Discs)_{proj, loc} \end{displaymath} by the [[simplicial localization]] of the [[local model structure on simplicial presheaves]] over $\mathbb{C}Disc$, [[Bousfield localization of model categories|localized]] (by the \href{hypercover#DescentFromDescentAlongHypercovers}{theorem of descent recognition along hypercovers}) at the [[hypercovers]] $U_\bullet\to X$ as seen over $CplxMfd$ restricted to $X$ a [[polydisc]] (this roundabout way since $\mathbb{C}Disc$ does not carry a [[Grothendieck topology]] but just a [[coverage]]). Now before [[Bousfield localization of model categories|Bousfield localization]] we have a simplicially enriched [[Quillen adjunction]] \begin{displaymath} sPSh(\mathbb{C}Disc)_{proj, loc} \stackrel{\overset{\underset{\to}{\lim}}{\longrightarrow}}{\underset{\Delta}{\longleftarrow}} sSet_{Quillen} \end{displaymath} which is simplicial-degree wise just the defining [[adjunction]] of the [[colimit]] functor $\underset{\to}{\lim}$ [[left adjoint]] to the [[constant presheaf]] functor. To see that this descends to a Quillen adjunction on the local model structure, by the \href{Quillen+adjunction#RecognitionOfSimplicialQuillenAdjunctions}{recognition theorem for simplicial Quillen adjunctions} we hence need to check that $\Delta$ preserves fibrant objects with respect to the local model structure, hence that any constant simplicial presheaf $\Delta S$ for $S$ a [[Kan complex]] already satisfies [[descent]] with respect to [[hypercovers]] as seen over $CplxMfd$. By the \href{hypercover#DescentFromDescentAlongHypercovers}{theorem of descent recognition along hypercovers} $\Delta S$ satisfies descent precisely if for each [[hypercover]] $U_\bullet \to X$ of any [[polydisc]] $X$. the induced morphism of [[derived hom-spaces]] \begin{displaymath} RHom(X, \Delta S) \longrightarrow RHom(U_\bullet, \Delta S) \end{displaymath} in the global [[model structure on simplicial presheaves]] is a [[weak equivalence]]. This $RHom$ in turn may be computed as the $sSet$-enriched [[hom object]] out of a cofibrant resolution $\hat X \to X$ and $\hat U_\bullet \to U_\bullet$, respectively. By the \href{model%20structure%20on%20simplicial%20presheaves#CofibrantObjects}{recognition of cofibrant objects in the projective model structure} the [[representable functor|representable]] $X$ is already cofibrant and a sufficient condition for a resolution $\hat U_\bullet \to U_\bullet$ to be cofibrant is that it is a [[split hypercover]]. Since $\mathbb{C}Disc \hookrightarrow CplxMfd$ is a [[dense subsite]], we may always choose such a split hypercover such that $\hat U_\bullet$ consists simplicial-degreewise of [[coproducts]] of [[polydiscs]]: by the proposition at \emph{\href{hypercover#ExistenceOfSplitRefinements}{hypercover -- Existence of split refinements}} Since the [[colimit]] of a [[representable functor]] is the point, this means that with such a choice $\underset{\to}{\lim} \hat U_\bullet$ is the [[simplicial set]] obtained by replacing in the hypercover by polydiscs each polydisc by a point. Forgetting the [[complex structure]] on all manifolds involved, one sees that this is precisely the ``[[etale homotopy type]]'' of $X$ as seen by the site [[CartSp]] of [[Cartesian spaces]], by the discussion at \emph{[[Smooth∞Grpd]]}, and this comes out as the ordinary [[homotopy type]] of the underlying [[topological space]] of $X$. But this is of course [[contractible homotopy type|contractible]]. In conclusion this means that \begin{displaymath} \begin{aligned} RHom(U_\bullet, \Delta S) &\simeq sPSh(\mathbb{C}Disc)(\hat U_\bullet, \Delta S) \\ & \simeq sSet(Sing(X), S) \\ & \simeq sSet(\ast, S) \\ &\simeq S \end{aligned} \end{displaymath} Therefore the [[descent]] condition for $\Delta S$ is satisfied. (This is also the statement of (\hyperlink{HopkinsQuick12}{Hopkins-Quick 12, lemma 2.3, prop. 2.4, lemma 2.5, prop. 2.6})). From here on the argument for the [[cohesion]] of $\mathbb{C}Analytic \infty Grpd$ proceeds as at \emph{[[∞-cohesive site]]} (which might just as well be adapted to the hyper-discussion here). \end{proof} \begin{cor} \label{ShapeOfComplexManifold}\hypertarget{ShapeOfComplexManifold}{} For $X\in CplxMfd \hookrightarrow \mathbb{C}Analytic\infty Grpd$ a [[complex manifold]], then the [[shape modality|shape]] $\Pi(X)$ is the [[homotopy type]] of its underlying [[topological space]]. \end{cor} In (\hyperlink{HopkinsQuick12}{Hopkins-Quick 12})) this is part of prop. 2.6. \hypertarget{OkaPrinciple}{}\subsubsection*{{Oka principle}}\label{OkaPrinciple} Discussion of the [[Oka principle]] in terms of $\mathbb{C}Analytic\infty Grpd$ is in (\hyperlink{Larusson01}{Larusson 01}). \begin{defn} \label{OkaManifold}\hypertarget{OkaManifold}{} Say that a [[complex manifold]] $X$ is an \emph{[[Oka manifold]]} if for every [[Stein manifold]] $\Sigma$ the canonical inclusion \begin{displaymath} Maps_{hol}(\Sigma, X) \longrightarrow Maps_{top}(\Sigma, X) \end{displaymath} from the [[mapping space]] of [[holomorphic functions]] to that of [[continuous functions]] (both equipped with the [[compact-open topology]]) is a [[weak homotopy equivalence]]. \end{defn} \begin{theorem} \label{}\hypertarget{}{} This is the case precisely if $Maps_{hol}(-,X) \in Psh_\infty(SteinSp)$ satisfies [[descent]] with respect to [[finite set|finite]] [[covers]]. \end{theorem} (\hyperlink{Larusson01}{Larusson 01, theorem 2.1}) \begin{remark} \label{}\hypertarget{}{} By corollary \ref{ShapeOfComplexManifold}, in terms of [[cohesion]], prop. \ref{Cohesion}, definition \ref{OkaManifold} should (\ldots{}check\ldots{}) read \begin{displaymath} \Pi[\Sigma,X] \simeq \flat [\Pi(\Sigma), \Pi(X)] \,. \end{displaymath} \end{remark} \hypertarget{DifferentialCohomology}{}\subsubsection*{{Complex analytic differential generalized cohomology}}\label{DifferentialCohomology} By prop. \ref{Cohesion} $\mathbb{C}Analytic \infty Grpd$ is [[cohesive (infinity,1)-topos|cohesive]] and hence by the discussion at \emph{[[differential cohomology hexagon]]} the objects $\hat E \in Stab(\mathbb{C}Analytic \infty Grpd)$ (hence the [[sheaves of spectra]] on $\mathbb{C}Mfd$ ) qualify as [[differential cohomology]] refinements of the [[cohomology theories]] [[Brown representability theorem|represented]] by the [[shape modality|shapes]] $E\coloneqq \Pi \hat E \in$ [[Spectra]]. Discussion of such complex analytic differential generalized cohomology is in (\hyperlink{HopkinsQuick12}{Hopkins-Quick 12, section 4}),. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{multiplicative_group_and_holomorphic_line_bundles}{}\subsubsection*{{Multiplicative group and holomorphic line $n$-bundles}}\label{multiplicative_group_and_holomorphic_line_bundles} The [[multiplicative group]] is a canonical [[∞-group]] object \begin{displaymath} \mathbb{G}_m \in Grp(\mathbb{C}Analytic\infty Grpd) \end{displaymath} given as an [[(∞,1)-presheaf]] by the assignment \begin{displaymath} \mathbb{G}_m \;\colon\; \Sigma \mapsto \mathcal{O}_\Sigma^\times \end{displaymath} that sends a [[Stein manifold]] to the multiplicative [[abelian group]] of non-vanishing [[holomorphic functions]] on it. The [[delooping]] $\mathbf{B}\mathbb{G}_m$ is the universal [[moduli stack]] for [[holomorphic line bundles]] (the [[Picard stack]]) and the double delooping $\mathbf{B}^2 \mathbb{G}_m$ that for [[holomorphic line 2-bundles]] (the [[Brauer stack]]). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[smooth ∞-groupoid]] \item [[complex analytic stack]] \item [[holomorphic line n-bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Finnur Lárusson]], \emph{Excision for simplicial sheaves on the Stein site and Gromov's Oka principle} (\href{http://arxiv.org/abs/math/0101103}{arXiv:math/0101103}) \item [[Jacob Lurie]], section 4.4. of \emph{[[Structured Spaces]]} \item [[Jacob Lurie]], sections 11 and 12 of \emph{[[Closed Immersions]]} \item [[Michael Hopkins]], [[Gereon Quick]], \emph{Hodge filtered complex bordism} (\href{http://arxiv.org/abs/1212.2173}{arXiv:1212.2173}) \end{itemize} [[!redirects complex analytic ∞-groupoids]] [[!redirects complex analytic infinity-groupoid]] [[!redirects complex analytic infinity-groupoids]] [[!redirects ComplexAnalytic∞Grpd]] [[!redirects ComplexAnalyticInfinityGrpd]] [[!redirects complex analytic ∞-stack]] [[!redirects complex analytic ∞-stacks]] [[!redirects complex analytic infinity-stack]] [[!redirects complex analytic infinity-stacks]] \end{document}