\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complex oriented cohomology theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{DefInTermsOfGeneralizedFirstChernClass}{In terms of generalized first Chern classes}\dotfill \pageref*{DefInTermsOfGeneralizedFirstChernClass} \linebreak \noindent\hyperlink{InTermsOfGenera}{In terms of genera and $E_\infty$ orientations}\dotfill \pageref*{InTermsOfGenera} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{CohomologyRingOfBU1}{Cohomology ring of $B U(1)$}\dotfill \pageref*{CohomologyRingOfBU1} \linebreak \noindent\hyperlink{FormalGroupLaw}{Formal group law}\dotfill \pageref*{FormalGroupLaw} \linebreak \noindent\hyperlink{TheCohomologyRingOfBUn}{Cohomology ring of $B U(n)$}\dotfill \pageref*{TheCohomologyRingOfBUn} \linebreak \noindent\hyperlink{canonical_orientation_on_complex_vector_bundles}{Canonical orientation on complex vector bundles}\dotfill \pageref*{canonical_orientation_on_complex_vector_bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{complex oriented cohomology theory} is a [[generalized (Eilenberg-Steenrod) cohomology theory]] which is [[orientation in generalized cohomology|oriented]] on all [[complex vector bundles]]. Examples include [[ordinary cohomology]], complex [[topological K-theory]], [[elliptic cohomology]] and [[cobordism cohomology]]. The collection of all complex oriented cohomology theories turns out to be parameterized over the [[moduli stack of formal group laws]]. The [[stratification]] of this stack by the [[height of a formal group|height of formal group]] leads to the stratification of complex oriented cohomology theory by ``[[chromatic level]]'', a perspective also known as \emph{[[chromatic homotopy theory]]}. For more detailed introduction see at \emph{[[Introduction to Cobordism and Complex Oriented Cohomology]]}. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{DefInTermsOfGeneralizedFirstChernClass}{}\subsubsection*{{In terms of generalized first Chern classes}}\label{DefInTermsOfGeneralizedFirstChernClass} Write $\mathbb{C}P^\infty \simeq B U(1) \simeq K(\mathbb{Z},2)$ for the inifinite [[complex projective space]], equivalently the [[classifying space]] for [[circle group]]-[[principal bundles]] (an [[Eilenberg-MacLane space]]); write $S^2$ for the [[2-sphere]] and write \begin{displaymath} i \;\colon\; S^2 \longrightarrow B U(1) \end{displaymath} for a representative of $1 \in \mathbb{Z} \simeq \pi_2(B U(1))$, classifying the [[universal complex line bundle]]. Regard both $S^2$ and $B U(1)$ as [[pointed homotopy types]] and take $i$ to be a pointed morphism. Let $E^\bullet$ be a [[multiplicative cohomology theory]], i.e. a [[functor]] $X \mapsto \pi_\bullet[X,E]$ for $E$ a [[ring spectrum]]. Write $\tilde E^\bullet$ for the corresponding [[reduced cohomology]] on [[pointed topological spaces]], such that for any pointed space $X$ there is a canonical [[direct sum]] decomposition (\href{generalized+%28Eilenberg-Steenrod%29+cohomology#UnreducedCohomologyIsReducedPlusPointValue}{this prop.}) \begin{displaymath} E^\bullet(X) \simeq \tilde E^\bullet(X) \oplus E^\bullet(\ast) \,. \end{displaymath} By the [[suspension isomorphism]] there is an identification \begin{displaymath} \tilde E^2(S^2) \simeq \tilde E^0(S^0) \simeq E^0(\ast) \simeq \pi_0(E) \end{displaymath} with the [[commutative ring]] underlying $E$. Write $1 \in \pi_0(E)$ for the multiplicative identity element in this ring. \begin{defn} \label{ComplexOrientedCohomologyTheory}\hypertarget{ComplexOrientedCohomologyTheory}{} A [[multiplicative cohomology theory]] $E$ is \emph{complex orientable} if the following equivalent conditions hold \begin{enumerate}% \item The morphism \begin{displaymath} i^\ast \;\colon\; E^2(B U(1)) \longrightarrow E^2(S^2) \end{displaymath} is [[surjection|surjective]]. \item The morphism \begin{displaymath} \tilde i^\ast \;\colon\; \tilde E^2(B U(1)) \longrightarrow \tilde E^2(S^2) \simeq \pi_0(E) \end{displaymath} is [[surjection|surjective]]. \item The element $1 \in \pi_0(E)$ is in the [[image]] of the morphism $\tilde i^\ast$. \end{enumerate} A \textbf{complex orientation} on a [[multiplicative cohomology theory]] $E^\bullet$ is an element \begin{displaymath} c_1^E \in \tilde E^2(B U(1)) \end{displaymath} (the ``first [[generalized Chern class]]'') such that \begin{displaymath} i^\ast c^E_1 = 1 \in \pi_0(E) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} Since $B U(1) \simeq K(\mathbb{Z},2)$ is the [[classifying space]] for [[complex line bundles]], it follows that a complex orientation on $E^\bullet$ induces an $E$-[[generalized Chern class|generalization]] of the [[first Chern class]] which to a [[complex line bundle]] $\mathcal{L}$ on $X$ classified by $\phi \colon X \to B U(1)$ assigns the class $c_1(\mathcal{L}) \coloneqq \phi^\ast c_1^E$. This construction extends to a general construction of $E$-[[Chern classes]]. \end{remark} \hypertarget{InTermsOfGenera}{}\subsubsection*{{In terms of genera and $E_\infty$ orientations}}\label{InTermsOfGenera} Complex orientation in the \hyperlink{Definition}{above} sense is indeed universal [[MU]]-[[orientation in generalized cohomology]]: \begin{prop} \label{ComplexOrientationIsMUAlgebraStructure}\hypertarget{ComplexOrientationIsMUAlgebraStructure}{} For $E$ a [[homotopy commutative ring spectrum]] then there is a [[bijection]] between complex orientations of $E$-cohomology and [[homotopy commutative ring spectrum]]-[[homomorphisms]] $MU \longrightarrow E$ out of [[MU]]. \end{prop} (\hyperlink{Hopkins99}{Hopkins 99, section 4}, \hyperlink{LurieLecture}{Lurie, lecture 6, theorem 8}) See at \emph{[[universal complex orientation on MU]]}. \begin{remark} \label{}\hypertarget{}{} One might hope that the above universal property can be refined to say that that if $E$ is an $E_\infty$-ring spectrum, then complex orientations of $E$ are in bijection with $E_\infty$ ring maps $MU \to E$. This is not the case; Ando classified $H_\infty$ ring maps $MU \to E$ in \hyperlink{Ando92}{his thesis} and in particular showed that not every complex orientation gives rise to an $H_\infty$ ring map out of $MU$. More recently, \hyperlink{HopkinsLawson16}{Hopkins and Lawson} have classified the further structure constituting an $E_\infty$ ring map out of $MU$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Examples of complex orientable cohomology theories: \begin{example} \label{}\hypertarget{}{} \textbf{([[ordinary cohomology]])} For $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]], the ordinary [[first Chern class]] \begin{displaymath} c_1 \in H^2(B U(1), \mathbb{Z}) \end{displaymath} defines a complex orientation of $H\mathbb{Z}$. \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{([[topological K-theory]])} For $E = KU$ complex [[topological K-theory]], then the class of the image of the the [[universal complex line bundle]] $\mathcal{O}(1)$ in [[reduced K-theory]] is a complex orientation. The induced [[formal group law]] (by prop. \ref{ComplexOrientedCohomologyTheoryFormalGroupLaw}) is the [[multiplicative formal group law]]. For details see at \emph{[[topological K-theory]]} the section \emph{\href{topological+K-theory#ComplexOrientationAndFormalGroupLaw}{Complex orientation and Formal group law}}. \end{example} \begin{example} \label{ComplexCobordism}\hypertarget{ComplexCobordism}{} \textbf{(complex cobordism)} For $E = MU$ [[complex cobordism cohomology theory]], the canonical map \begin{displaymath} B U(1) \stackrel{\simeq}{\to} MU(1) \to MU \end{displaymath} defines a complex orientation. \end{example} \begin{example} \label{BrownPeterson}\hypertarget{BrownPeterson}{} [[Brown-Peterson cohomology]] $E = B P^\bullet$. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{CohomologyRingOfBU1}{}\subsubsection*{{Cohomology ring of $B U(1)$}}\label{CohomologyRingOfBU1} \begin{prop} \label{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}\hypertarget{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}{} Given a complex oriented cohomology theory $(E^\bullet, c^E_1)$ according to def. \ref{ComplexOrientedCohomologyTheory}, then there are [[isomorphisms]] of [[graded rings]] \begin{enumerate}% \item $E^\bullet(B U(1)) \simeq E^\bullet(\ast)[ [ c_1^E ] ]$ (between the $E$-[[cohomology ring]] of $B U(1)$ and the [[formal power series]] (but see remark \ref{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}) in one generator of even degree over the $E$-[[cohomology ring]] of the point); \item $E^\bullet(B U(1) \times B U(1)) \simeq E^\bullet(\ast)[ [ c_1^E \otimes 1 , 1 \otimes c_1^E ] ]$. \end{enumerate} \end{prop} \begin{proof} We may realize the [[classifying space]] $B U(1)$ as the infinite [[complex projective space]] $\mathbb{C}P^\infty = \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n$ (\href{classifying+space#RealComplexProjectiveSpaceAsGrassmannian}{exmpl.}). There is a standard [[CW-complex]]-structure on the [[classifying space]] $\mathbb{C}P^\infty$, given by inductively identifying $\mathbb{C}P^{n+1}$ with the result of attaching a single $2n$-cell to $\mathbb{C}P^n$ (\href{complex+projective+space#CellComplexStructureOnComplexProjectiveSpace}{prop.}). With this structure, the unique 2-cell inclusion $i \;\colon\; S^2 \hookrightarrow \mathbb{C}P^\infty$ is identified with the canonical map $S^2 \to B U(1)$. Then consider the [[Atiyah-Hirzebruch spectral sequence]] for the $E$-cohomology of $\mathbb{C}P^n$. \begin{displaymath} H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \;\Rightarrow\; E^\bullet(\mathbb{C}P^n) \,. \end{displaymath} Since (\href{complex+projective+space#OrdinaryCohomologyOfComplexProjectiveSpace}{prop.}) the [[ordinary cohomology]] with [[integer]] [[coefficients]] of projective space is \begin{displaymath} H^\bullet(\mathbb{C}P^n, \mathbb{Z}) \simeq \mathbb{Z}[c_1]/((c_1)^{n-1}) \,, \end{displaymath} where $c_1$ represents a unit in $H^2(S^2, \mathbb{Z})\simeq \mathbb{Z}$, and since similarly the [[ordinary homology]] of $\mathbb{C}P^n$ is a [[free abelian group]] (\href{complex+projective+space#OrdinaryCohomologyOfComplexProjectiveSpace}{prop.}), hence a [[projective object]] in abelian groups (\href{projective+object#ProjectiveObjectsInAbAreFreeGroups}{prop.}), the [[Ext]]-group vanishes in each degree ($Ext^1(H_n(\mathbb{C}P^n), E^\bullet(\ast)) = 0$) and so the [[universal coefficient theorem]] (\href{universal+coefficient+theorem#OrdinaryStatementInCohomology}{prop.}) gives that the second page of the spectral sequence is \begin{displaymath} H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \simeq E^\bullet(\ast)[ c_1 ] / (c_1^{n+1}) \,. \end{displaymath} By the standard construction of the [[Atiyah-Hirzebruch spectral sequence]] (\href{Atiyah–Hirzebruch+spectral+sequence#ConstructionByFilteringTheBaseSpace}{here}) in this identification the element $c_1$ is identified with a generator of the [[relative cohomology]] \begin{displaymath} E^2((\mathbb{C}P^n)_2, (\mathbb{C}P^n)_1) \simeq \tilde E^2(S^2) \end{displaymath} (using, by the above, that this $S^2$ is the unique 2-cell of $\mathbb{C}P^n$ in the standard cell model). This means that $c_1$ is a permanent cocycle of the spectral sequence (in the kernel of all differentials) precisely if it arises via restriction from an element in $E^2(\mathbb{C}P^n)$ and hence precisely if there exists a complex orientation $c_1^E$ on $E$. Since this is the case by assumption on $E$, $c_1$ is a permanent cocycle. (For the fully detailed argument, see (\hyperlink{Pedrotti16}{Pedrotti 16})). The same argument applied to all elements in $E^\bullet(\ast)[c]$, or else the $E^\bullet(\ast)$-linearity of the differentials (\href{multiplicative+cohomology+theory#LinearityOfDifferentialsInSerreAHSSForMultiplicativeCohomologyTheory}{prop.}), implies that all these elements are permanent cocycles. Since the AHSS of a multiplicative cohomology theory is a [[multiplicative spectral sequence]] (\href{multiplicative+cohomology+theory#AHSSForMultiplicativeCohomologyTheoryIsMultiplicative}{prop.}) this implies that the differentials in fact vanish on all elements of $E^\bullet(\ast) [c_1] / (c_1^{n+1})$, hence that the given AHSS collapses on the second page to give \begin{displaymath} \mathcal{E}_\infty^{\bullet,\bullet} \simeq E^\bullet(\ast)[ c_1^{E} ] / ((c_1^E)^{n+1}) \end{displaymath} or in more detail: \begin{displaymath} \mathcal{E}_\infty^{p,\bullet} \simeq \left\{ \itexarray{ E^\bullet(\ast) & \text{if}\; p \leq 2n \; and\; even \\ 0 & otherwise } \right. \,. \end{displaymath} Moreover, since therefore all $\mathcal{E}_\infty^{p,\bullet}$ are [[free modules]] over $E^\bullet(\ast)$, and since the filter stage inclusions $F^{p+1} E^\bullet(X) \hookrightarrow F^{p}E^\bullet(X)$ are $E^\bullet(\ast)$-[[module]] homomorphisms (\href{multiplicative+cohomology+theory#RingAndModuleStructureOnCohomologyGroupsOfMultiplicativeCohomplogyTheory}{prop.}) the \href{spectral+sequence#ExtensionProblem}{extension problem} trivializes, in that all the [[short exact sequences]] \begin{displaymath} 0 \to F^{p+1}E^{p+\bullet}(X) \longrightarrow F^{p}E^{p+\bullet}(X) \longrightarrow \mathcal{E}_\infty^{p,\bullet} \to 0 \end{displaymath} [[split exact sequence|split]] (since the [[Ext]]-group $Ext^1_{E^\bullet(\ast)}(\mathcal{E}_\infty^{p,\bullet},-) = 0$ vanishes on the [[free module]], hence [[projective module]] $\mathcal{E}_\infty^{p,\bullet}$). In conclusion, this gives an isomorphism of graded rings \begin{displaymath} E^\bullet(\mathbb{C}P^n) \simeq \underset{p}{\oplus} \mathcal{E}_\infty^{p,\bullet} \simeq E^\bullet(\ast)[ c_1 ] / ((c_1^{E})^{n+1}) \,. \end{displaymath} A first consequence is that the projection maps \begin{displaymath} E^\bullet((\mathbb{C}P^\infty)_{2n+2}) = E^\bullet(\mathbb{C}P^{n+1}) \to E^\bullet(\mathbb{C}P^{n+}) = E^\bullet((\mathbb{C}P^\infty)_{2n}) \end{displaymath} are all [[epimorphisms]]. Therefore this sequence satisfies the [[Mittag-Leffler condition]] (\href{lim1#MittagLefflerCondition}{def.}, \href{lim1#MittagLefflerSatisfiedInParticularForTowerOfSurjections}{exmpl.}) and therefore the [[Milnor exact sequence]] for generalized cohomology (\href{lim1#MilorSequenceForReducedCohomologyOnCWComplex}{prop.}) finally implies the claim: \begin{displaymath} \begin{aligned} E^\bullet(B U(1)) & \simeq E^\bullet(\mathbb{C}P^\infty) \\ & \simeq E^\bullet( \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n ) \\ &\simeq \underset{\longrightarrow}{\lim}_n E^\bullet(\mathbb{C}P^n) \\ &\simeq \underset{\longrightarrow}{\lim}_n ( E^\bullet(\ast) [c_1^E] / ((c_1^E)^{n+1}) ) \\ & \simeq E^\bullet(\ast)[ [ c_1^E ] ] \,, \end{aligned} \end{displaymath} where the last step is \href{formal+scheme#FormalPowerSeries}{this prop.}. \end{proof} \begin{remark} \label{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}\hypertarget{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}{} There is in general a choice to be made in interpreting the [[cohomology groups]] of a [[multiplicative cohomology theory]] $E$ as a [[ring]]: a priori $E^\bullet(X)$ is a sequence \begin{displaymath} \{E^n(X)\}_{n \in \mathbb{Z}} \end{displaymath} of [[abelian groups]], together with a system of group homomorphisms \begin{displaymath} E^{n_1}(X) \otimes E^{n_2}(X) \longrightarrow E^{n_1 + n_2}(X) \,, \end{displaymath} one for each pair $(n_1,n_2) \in \mathbb{Z}\times\mathbb{Z}$. In turning this into a single [[ring]] by forming [[formal sums]] of elements in the groups $E^n(X)$, there is in general the choice of whether allowing formal sums of only finitely many elements, or allowing arbitrary formal sums. In the former case the ring obtained is the [[direct sum]] \begin{displaymath} \oplus_{n \in \mathbb{N}} E^n(X) \end{displaymath} while in the latter case it is the [[Cartesian product]] \begin{displaymath} \prod_{n \in \mathbb{N}} E^n (X) \,. \end{displaymath} These differ in general. For instance if $E$ is [[ordinary cohomology]] with [[integer]] [[coefficients]] and $X$ is infinite [[complex projective space]] $\mathbb{C}P^\infty$, then (\href{complex+projective+space+OrdinaryCohomologyOfComplexProjectiveSpace}{prop.}) \begin{displaymath} E^n(X) = \left\{ \itexarray{ \mathbb{Z} & n \; even \\ 0 & otherwise } \right. \end{displaymath} and the product operation is given by \begin{displaymath} E^{2{n_1}}(X)\otimes E^{2 n_2}(X) \longrightarrow E^{2(n_1 + n_2)}(X) \end{displaymath} for all $n_1, n_2$ (and zero in odd degrees, necessarily). Now taking the [[direct sum]] of these, this is the [[polynomial ring]] on one generator (in degree 2) \begin{displaymath} \oplus_{n \in \mathbb{N}} E^n(X) \;\simeq\; \mathbb{Z}[c_1] \,. \end{displaymath} But taking the [[Cartesian product]], then this is the [[formal power series ring]] \begin{displaymath} \prod_{n \in \mathbb{N}} E^n(X) \;\simeq\; \mathbb{Z} [ [ c_1 ] ] \,. \end{displaymath} A priori both of these are sensible choices. The former is the usual choice in traditional [[algebraic topology]]. However, from the point of view of regarding [[ordinary cohomology]] theory as a [[multiplicative cohomology theory]] right away, then the second perspective tends to be more natural; The cohomology of $\mathbb{C}P^\infty$ is naturally computed as the [[inverse limit]] of the cohomolgies of the $\mathbb{C}P^n$, each of which unambiguously has the ring structure $\mathbb{Z}[c_1]/((c_1)^{n+1})$. So we may naturally take the limit in the [[category]] of [[commutative rings]] right away, instead of first taking it in $\mathbb{Z}$-indexed sequences of abelian groups, and then looking for ring structure on the result. But the limit taken in the category of rings gives the [[formal power series ring]] (see \href{formal+scheme#FormalPowerSeries}{here}). See also for instance remark 1.1. in [[Jacob Lurie]]: \emph{[[A Survey of Elliptic Cohomology]]}. \end{remark} \hypertarget{FormalGroupLaw}{}\subsubsection*{{Formal group law}}\label{FormalGroupLaw} Let again $B U(1)$ be the [[classifying space]] for [[complex line bundles]], modeled, in particular, by infinite [[complex projective space]] $\mathbb{C}P^\infty)$. \begin{lemma} \label{BU1HomotopyGroupStructure}\hypertarget{BU1HomotopyGroupStructure}{} There is a [[continuous function]] \begin{displaymath} \mu \;\colon\; \mathbb{C}P^\infty \times \mathbb{C}P \longrightarrow \mathbb{C}P^\infty \end{displaymath} which represents the [[tensor product of line bundles]] in that under the defining equivalence, and for $X$ any [[paracompact Hausdorff space]] (notably a [[CW-complex]], since all [[CW-complexes are paracompact Hausdorff spaces]]), then \begin{displaymath} \itexarray{ [X, \mathbb{C}P^\infty \times \mathbb{C}P^\infty] &\simeq& \mathbb{C}LineBund(X)_{/\sim} \times \mathbb{C}LineBund(X)_{/\sim} \\ {}^{\mathllap{[X,\mu]}}\downarrow && \downarrow^{\mathrlap{\otimes}} \\ [X,\mathbb{C}P^\infty] &\simeq& \mathbb{C}LineBund(X)_{/\sim} } \,, \end{displaymath} where $[-,-]$ denotes the [[hom-sets]] in the (Serre-Quillen-)[[classical homotopy category]] and $\mathbb{C}LineBund(X)_{/\sim}$ denotes the set of [[isomorphism classes]] of [[complex line bundles]] on $X$. Together with the canonical point inclusion $\ast \to \mathbb{C}P^\infty$, this makes $\mathbb{C}P^\infty$ an [[abelian group|abelian]] [[group object]] in the [[classical homotopy category]] (an abelian [[H-group]]). \end{lemma} \begin{proof} By the [[Yoneda lemma]] (the [[fully faithful functor|fully faithfulness]] of the [[Yoneda embedding]]) there exists such a morphism $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \longrightarrow \mathbb{C}P^\infty$ in the [[classical homotopy category]]. But since $\mathbb{C}P^\infty$ admits the structure of a [[CW-complex]] (\href{complex+projective+space#CellComplexStructureOnComplexProjectiveSpace}{prop.}) it is cofibrant in the [[standard model structure on topological spaces]], as is its [[Cartesian product]] with itself (\href{CW+complex#ClosureOfCWComplexesUnderCartesianProduct}{prop.}). Since moreover all spaces are fibrant in the [[classical model structure on topological spaces]], it follows (by \href{Introduction+to+Stable+homotopy+theory+--+P#HomsOutOfCofibrantIntoFibrantComputeHomotopyCategory}{this lemma}) that there is an actual [[continuous function]] representing that morphism in the homotopy category. That this gives the structure of an [[abelian group|abelian]] [[group object]] now follows via the [[Yoneda lemma]] from the fact that each $\mathbb{C}LineBund(X)_{/\sim}$ has the structure of an [[abelian group]] under [[tensor product of line bundles]], with the [[trivial bundle|trivial]] line bundle (wich is classified by maps factoring through $\ast \to \mathbb{C}P^\infty$) being the neutral element, and that this group structure is [[natural transformation|natural]] in $X$. \end{proof} \begin{remark} \label{}\hypertarget{}{} The space $B U(1) \simeq \mathbb{C}P^\infty$ has in fact more structure than that of an [[H-group]] from lemma \ref{BU1HomotopyGroupStructure}. As an object of the [[homotopy theory]] represented by the [[classical model structure on topological spaces]], it is a \emph{[[2-group]]}, a [[truncated object in an (infinity,1)-category|1-truncated]] [[infinity-group]]. \end{remark} \begin{prop} \label{ComplexOrientedCohomologyTheoryFormalGroupLaw}\hypertarget{ComplexOrientedCohomologyTheoryFormalGroupLaw}{} Let $(E, c_1^E)$ be a [[complex oriented cohomology theory]]. Under the identification \begin{displaymath} E^\bullet(\mathbb{C}P^\infty) \simeq \pi_\bullet(E)[ [ c^E_1 ] ] \;\;\;\,, \;\;\; E^\bullet(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \simeq \pi_\bullet(E)[ [ c^E_1 \otimes 1 , \, 1 \otimes c^E_1 ] ] \end{displaymath} from prop. \ref{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}, the operation \begin{displaymath} \pi_\bullet(E) [ [ c^E_1 ] ] \simeq E^\bullet(\mathbb{C}P^\infty) \longrightarrow E^\bullet( \mathbb{C}P^\infty \times \mathbb{C}P^\infty ) \simeq \pi_\bullet(E)[ [ c_1^E \otimes 1, 1 \otimes c_1^E ] ] \end{displaymath} of pullback in $E$-cohomology along the maps from lemma \ref{BU1HomotopyGroupStructure} constitutes a 1-dimensional graded-commutative [[formal group law]] (\href{formal+group#Commutative1DimFormalGroupLaw}{exmpl.}) over the [[graded commutative ring]] $\pi_\bullet(E)$ (\href{Introduction+to+Stable+homotopy+theory+--+1-2#HomotopyGroupsOfHomotopyCommutativeRingSpectrum}{prop.}). If we consider $c_1^E$ to be in degree 2, then this formal group law is compatibly graded. \end{prop} \begin{proof} The associativity and commutativity conditions follow directly from the respective properties of the map $\mu$ in lemma \ref{BU1HomotopyGroupStructure}. The grading follows from the nature of the identifications in prop. \ref{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}. \end{proof} \begin{remark} \label{}\hypertarget{}{} That the grading of $c_1^E$ in prop. \ref{ComplexOrientedCohomologyTheoryFormalGroupLaw} is in negative degree is because by definition \begin{displaymath} \pi_\bullet(E) = E_\bullet = E^{-\bullet} \end{displaymath} (\href{Introduction+to+Stable+homotopy+theory+--+1-2#EMHomology}{rmk.}). Under different choices of orientation, one obtains different but isomorphic formal group laws. \end{remark} \begin{example} \label{}\hypertarget{}{} The [[formal group law]] of [[complex cobordism cohomology theory]], example \ref{ComplexCobordism} is [[universal property|universal]] in that for every [[commutative ring]] $R$ there is a [[natural bijection]] \begin{displaymath} CRing(MU^\bullet, R) \simeq FormalGroupLaws_{/R} \,. \end{displaymath} $MU^\bullet$ is the \emph{[[Lazard ring]]}. This is \emph{[[Milnor-Quillen's theorem on MU]]} (involving [[Lazard's theorem]]). \end{example} \begin{example} \label{}\hypertarget{}{} The [[formal group law]] of [[Brown-Peterson cohomology theory]], example \ref{BrownPeterson} is [[universal property|universal]] for $p$-local cohomology theories in that $\mathbb{G}_{B P}$ is universal among $p$-local, [[p-typical formal group laws]]. \end{example} \hypertarget{TheCohomologyRingOfBUn}{}\subsubsection*{{Cohomology ring of $B U(n)$}}\label{TheCohomologyRingOfBUn} \begin{prop} \label{CohomologyRingOfBUn}\hypertarget{CohomologyRingOfBUn}{} For $E$ a complex oriented cohomology theory and $n \in \mathbb{N}$, restriction along the canonical map \begin{displaymath} (B U(1))^n \longrightarrow B U(n) \end{displaymath} induces an [[isomorphism]] \begin{displaymath} E^\bullet(B U(n)) \stackrel{\simeq}{\longrightarrow} (\pi_\bullet E)[ [ c^E_1, \cdots, c^E_n ] ] \simeq E^\bullet((B U(1))^n)^{\Sigma_n} \hookrightarrow E^\bullet((B U(1))^n) \simeq (\pi_\bullet E)[ [(c_1^E)_1, \cdots (c_1^E)_n ] ] \,, \end{displaymath} of $E^\bullet(B U(n))$ with the [[cyclic group]]-[[invariants]] in $E^\bullet((B U(1))^n)$, hence with the [[power series]] ring in the [[elementary symmetric polynomials]] $c_i^E$ (the [[generalized Chern classes]]) in the $c_1^E$-s (the generalized first Chern classes of prop. \ref{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}). \end{prop} Use \href{ordinary+homology+spectra+split#WhenGeneralizedHomologySpectraSplit}{this proposition} to reduce to the situation for ordinary [[Chern classes]]. (e.g. \hyperlink{LurieLecture}{Lurie 10, lecture 4}) \hypertarget{canonical_orientation_on_complex_vector_bundles}{}\subsubsection*{{Canonical orientation on complex vector bundles}}\label{canonical_orientation_on_complex_vector_bundles} The follows says that complex oriented cohomology theories in the sense of def. \ref{ComplexOrientedCohomologyTheory}, indeed canonically have an [[orientation in generalized cohomology]] for the ([[spherical fibration]] of) any [[complex vector bundle]]. For more details see at \emph{[[universal complex orientation on MU]]}. \begin{prop} \label{ThomSpaceOfZetan}\hypertarget{ThomSpaceOfZetan}{} For $E$ any [[cohomology theory]] and $n \in \mathbb{N}$, $n \geq 1$, there is a canonical [[isomorphism]] of [[relative cohomology]] \begin{displaymath} E^\bullet(B U(n), B U(n-1)) \simeq E^\bullet( B( \zeta_n), S( \zeta_n) ) \,, \end{displaymath} where $\zeta_n \coloneqq E U(n) \underset{U(n)}{\times} \mathbb{R}^{2n}$ is the [[universal complex vector bundle]]. \end{prop} \begin{proof} Observe that the [[sphere bundle]] $S(\zeta_n) \to B U(n)$ of the [[universal complex vector bundle]] is equivalently the canonical map $B U(n-1) \to B U(n)$. This follows form the fact that $S^{2n-1} \simeq U(n)/U(n-1)$ and that hence the [[unit sphere]] bundle is equivalently the quotient of the $U(n)$-[[universal principal bundle]] by $U(n-1)$ \begin{displaymath} \itexarray{ U(n) &\longrightarrow& \ast \\ && \downarrow \\ && B U(n) } \;\;\;\; \stackrel{}{\mapsto}\;\;\;\; \itexarray{ S^{2n-1} \simeq & U(n)/U(n-1) &\longrightarrow& B U(n-1) \\ & && \downarrow \\ & && B U(n) } \,. \end{displaymath} The unit ball bundle $B(\zeta_n)$ is weakly equivalent to $B U(n)$, and under this identification the map $S(\zeta_n) \to B(\zeta_n)$ is equivalent to $B U(n-1) \to B U(n)$. \end{proof} \begin{prop} \label{}\hypertarget{}{} For $E$ a complex oriented cohomology theory, its $n$th [[generalized Chern class]] $c^E_n$, prop. \ref{CohomologyRingOfBUn}, identified as an element of $E^\bullet(B(\zeta_n), S(\zeta_n))$ via prop. \ref{ThomSpaceOfZetan}, is a [[Thom class]]. \end{prop} (e.g. \hyperlink{LurieLecture}{Lurie 10, lecture 5, prop. 6}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real oriented cohomology theory]] \item [[generalized (Eilenberg-Steenrod) cohomology theory]] \item [[multiplicative cohomology theory]] \item [[orientation in generalized cohomology]] \item [[complex cobordism cohomology theory]] \item [[Landweber exact functor theorem]] \item [[chromatic homotopy theory]] \end{itemize} [[!include chromatic tower examples - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Textbook accounts include \begin{itemize}% \item [[Frank Adams]], part II, section 2 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochmann]], section 4.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Introduction includes \begin{itemize}% \item \emph{[[Introduction to Cobordism and Complex Oriented Cohomology]]} \item [[Riccardo Pedrotti]], \emph{Complex oriented cohomology, generalized orientation and Thom isomorphism}, 2016, 2018 ([[PedrotticECohomology2018.pdf:file]]) \end{itemize} The perspective of [[chromatic homotopy theory]] originates in \begin{itemize}% \item [[Mike Hopkins]], \emph{[[Complex oriented cohomology theories and the language of stacks]]}, 1999 course notes (\href{http://www.math.rochester.edu/u/faculty/doug/otherpapers/coctalos.pdf}{pdf}) \end{itemize} and is further developed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, Lecture notes, 2010 (\href{http://www.math.harvard.edu/~lurie/252x.html}{web}) Lecture 4 \emph{Complex-oriented cohomology theories} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture4.pdf}{pdf}) Lecture 6 \emph{MU and complex orientations} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture6.pdf}{pdf}) \end{itemize} See also the references at \emph{\href{equivariant+cohomology#InComplexOrientedGeneralizedCohomologyTheory}{equivariant cohomology -- References -- Complex oriented cohomology}}-. A comparison between complex orientations and $H_\infty$ ring maps out of $MU$ was given in \begin{itemize}% \item [[Matthew Ando]] \emph{Operations in complex-oriented cohomology theories related to subgroups of formal groups} (\href{https://dspace.mit.edu/bitstream/handle/1721.1/13230/26903638-MIT.pdf?sequence=2}{PhD Thesis}) \end{itemize} More recent developments include \begin{itemize}% \item [[Michael Hopkins]], [[Tyler Lawson]], \emph{Strictly commutative complex orientation theory} (\href{http://arxiv.org/abs/1603.00047}{arXiv:1603.00047}) \end{itemize} [[!redirects complex oriented cohomology theories]] [[!redirects complex oriented cohomology]] [[!redirects complex-oriented cohomology theory]] [[!redirects complex-oriented cohomology theories]] [[!redirects complex orientable cohomology theory]] [[!redirects complex orientable cohomology theories]] \end{document}