\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complex projective space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{cell_structure}{Cell structure}\dotfill \pageref*{cell_structure} \linebreak \noindent\hyperlink{homotopy}{Homotopy}\dotfill \pageref*{homotopy} \linebreak \noindent\hyperlink{Cohomology}{Homology and Cohomology}\dotfill \pageref*{Cohomology} \linebreak \noindent\hyperlink{ordinary}{Ordinary}\dotfill \pageref*{ordinary} \linebreak \noindent\hyperlink{complexoriented}{Complex-oriented}\dotfill \pageref*{complexoriented} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Complex projective space $\mathbb{C}P^n$ is the [[projective space]] $\mathbb{A}P^n$ for $\mathbb{A} = \mathbb{C}$ being the [[complex numbers]] (and for $n \in \mathbb{N}$), a [[complex manifold]] of complex [[dimension]] $n$ (real dimension $2n$). Equivalently, this is the complex [[Grassmannian]] $Gr_1(\mathbb{C}^{n+1})$. For the special case $n = 1$ then $\mathbb{C}P^1 \simeq S^2$ is the [[Riemann sphere]]. As $n$ ranges, there are natural inclusions \begin{displaymath} \ast = \mathbb{C}P^0 \hookrightarrow \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^2 \hookrightarrow \mathbb{C}P^3 \hookrightarrow \cdots \,. \end{displaymath} The [[sequential colimit]] over this sequence is the infinite complex projective space $\mathbb{C}P^\infty$. This is a model for the [[classifying space]] $B U(1)$ of [[circle principal bundles]]/[[complex line bundles]] (an [[Eilenberg-MacLane space]] $K(\mathbb{Z},2)$). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{ComplexProjectiveSpace}\hypertarget{ComplexProjectiveSpace}{} For $n \in \mathbb{N}$, then \textbf{complex $n$-dimensional complex projective space} is the [[complex manifold]] (often just regarded as its underlying [[topological space]]) defined as the [[quotient]] \begin{displaymath} \mathbb{C}P^n \coloneqq (\mathbb{C}^{n+1}-\{0\})/_\sim \end{displaymath} of the [[Cartesian product]] of $(n+1)$-copies of the [[complex plane]], with the origin removed, by the [[equivalence relation]] \begin{displaymath} (z \sim w) \Leftrightarrow (z = \kappa \cdot w) \end{displaymath} for some $\kappa \in \mathbb{C} - \{0\}$ and using the canonical multiplicative [[action]] of $\mathbb{C}$ on $\mathbb{C}^{n+1}$. The canonical inclusions \begin{displaymath} \mathbb{C}^{n+1} \hookrightarrow \mathbb{C}^{n+2} \end{displaymath} induce canonical inclusions \begin{displaymath} \mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n+1} \,. \end{displaymath} The [[sequential colimit]] over this sequence of inclusions is the \emph{infinite complex projective space} \begin{displaymath} \mathbb{C}P^\infty \coloneqq \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n \,. \end{displaymath} \end{defn} The following equivalent characterizations are immediate but useful: \begin{prop} \label{ComplexProjectiveSpaceAsGrassmannian}\hypertarget{ComplexProjectiveSpaceAsGrassmannian}{} For $n \in \mathbb{N}$ then complex projective space, def. \ref{ComplexProjectiveSpace}, is equivalently the complex [[Grassmannian]] \begin{displaymath} \mathbb{C}P^n \simeq Gr_1(\mathbb{C}^{n+1}) \,. \end{displaymath} \end{prop} \begin{prop} \label{ComplexProjectiveSpaceAsS1Quotient}\hypertarget{ComplexProjectiveSpaceAsS1Quotient}{} For $n \in \mathbb{N}$ then complex projective space, def. \ref{ComplexProjectiveSpace}, is equivalently \begin{enumerate}% \item the [[coset]] \begin{displaymath} \mathbb{C}P^n \simeq U(n+1)/(U(n) \times U(1)) \,, \end{displaymath} \item the quotient of the [[n-sphere|(2n+1)-sphere]] by the [[circle group]] $S^1 \simeq \{ \kappa \in \mathbb{C}| {\vert \kappa \vert} = 1\}$ \end{enumerate} \begin{displaymath} \mathbb{C}P^n \simeq S^{2n+1}/S^1 \,. \end{displaymath} \end{prop} \begin{proof} To see the second characterization from def. \ref{ComplexProjectiveSpace}: With ${\vert -\vert} \colon \mathbb{C}^{n} \longrightarrow \mathbb{R}$ the standard [[norm]], we have that every element $\vec z \in \mathbb{C}^{n+1}$ is identified under the defining equivalence relation with \begin{displaymath} \frac{1}{\vert \vec z\vert}\vec z \in S^{2n+1} \hookrightarrow \mathbb{C}^{n+1} \end{displaymath} lying on the unit $(2n+1)$-sphere. This fixes the action of $\mathbb{C}-0$ up to a remaining action of complex numbers of unit [[absolute value]]. These form the [[circle group]] $S^1$. This shows that we have a [[commuting diagram]] of functions of underlying sets of the form \begin{displaymath} \itexarray{ S^{2n+1} &\hookrightarrow& \mathbb{C}^{n+1} \setminus \{0\} \\ {}^{\mathllap{q_{S^{2n+1}}}}\downarrow &\searrow^{\mathrlap{f}}& \downarrow^{\mathrlap{q_{\mathbb{C}^{n+1}}}} \\ S^{2n+1}/S^1 &\longrightarrow& \mathbb{C}P^n } \end{displaymath} where the top horizontal and the two vertical functions are [[continuous function|continuous]], and where the bottom function is a [[bijection]]. Since the diagonal [[composition|composite]] is also continuous, the nature of the [[quotient space topology]] implies that the bottom function is also continuous. To see that it is a [[homeomorphism]] it hence remains to see that it is an [[open map]] (by \href{homeomorphism#HomeoContinuousOpenBijection}{this prop.}). So let $U \subset S^{2n+1}/S^1$ be an open set, which means that $q_{S^{2n+1}}^{-1}(U) \subset S^{2n+1}$ is an open set. We need to see that $f(q_{S^{2n+1}}^{-1}(U)) \subset \mathbb{C}P^{n}$ is open, hence that $q_{\mathbb{C}^{n+1}}^{-1}(f(q_{S^{2n+1}}^{-1}(U))) \subset \mathbb{C}^{n+1}$ is open. Now by the nature of the [[Euclidean space|Euclidean]] [[metric topology]], the open subset $q_{S^{2n+1}}^{-1}(U)$ is a union of open balls $B^\circ_x(\epsilon)$ in $\mathbb{C}^{n+1}$ intersected with $S^{2n+1}$. But then $q_{\mathbb{C}^{n+1}}^{-1}(f(B^\circ_x(\epsilon)\vert_{S^{2n+1}}))$ is their [[orbit]] under the multiplicative action by $\mathbb{C} \setminus \{0\}$, hence is a [[cylinder]] $B^\circ_x(\epsilon)\vert_{S^{2n+1}} \times (\mathbb{C} \setminus \{0\})$. This is clearly open. The first characterization follows via prop. \ref{ComplexProjectiveSpaceAsGrassmannian} from the general discusion at \emph{[[Grassmannian]]}. With this the second characterization follows also with the [[coset]] identification of the $(2n+1)$-sphere: $S^{2n+1} \simeq U(n+1)/U(n)$ (\href{unitary+group#nSphereAsUnitaryCosetSpace}{exmpl.}). \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[complex projective curve]] \item [[complex projective plane]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \hypertarget{cell_structure}{}\subsubsection*{{Cell structure}}\label{cell_structure} \begin{prop} \label{CellComplexStructureOnComplexProjectiveSpace}\hypertarget{CellComplexStructureOnComplexProjectiveSpace}{} There is a [[CW-complex]] structure on complex projective space $\mathbb{C}P^n$ (def. \ref{ComplexProjectiveSpace}) for $n \in \mathbb{N}$, given by [[induction]], where $\mathbb{C}P^{n+1}$ arises from $\mathbb{C}P^n$ by [[attaching space|attaching]] a single cell of dimension $2(n+1)$ with [[attaching map]] the [[projection]] $S^{2n+1} \longrightarrow \mathbb{C}P^n$ from prop. \ref{ComplexProjectiveSpaceAsS1Quotient}: \begin{displaymath} \itexarray{ S^{2n+1} &\longrightarrow& S^{2n+1}/S^1 \simeq \mathbb{C}P^n \\ {}^{\mathllap{\iota_{2n+2}}}\downarrow^{\mathrlap{i_n}} &(po)& \downarrow \\ D^{2n+2} &\underset{q}{\longrightarrow}& \mathbb{C}P^{n+1} } \,. \end{displaymath} \end{prop} \begin{proof} Given [[homogeneous coordinates]] $(z_0 , z_1 , \cdots , z_n , z_{n+1} , z_{n+2}) \in \mathbb{C}^{n+2}$ for $\mathbb{C}P^{n+1}$, let \begin{displaymath} \phi \coloneqq -arg(z_{n+2}) \end{displaymath} be the [[phase]] of $z_{n+2}$. Then under the equivalence relation defining $\mathbb{C}P^{n+1}$ these coordinates represent the same element as \begin{displaymath} \frac{1}{\vert \vec z\vert}(e^{i \phi} z_0, e^{i \phi}z_1,\cdots, e^{i \phi}z_{n+1}, r) \,, \end{displaymath} where \begin{displaymath} r = {\vert z_{n+2}\vert}\in [0,1) \subset \mathbb{C} \end{displaymath} is the [[absolute value]] of $z_{n+2}$. Representatives $\vec z'$ of this form (${\vert \vec z' \vert = 1}$ and $z'_{n+2} \in [0,1]$) parameterize the [[n-disk|2n+2-disk]] $D^{2n+2}$ with [[boundary]] the $(2n+1)$-sphere at $r = 0$. The resulting function $q \colon D^{2n+2} \to \mathbb{C}P^{n+1}$ is continuous: It may be factored as \begin{displaymath} \itexarray{ q_{D^{2n+2}} \colon & D^{2n+2} &\overset{\phantom{AAA}}{\hookrightarrow}& \mathbb{C}^{n+2} \setminus \{0\} &\overset{q_{\mathbb{C}^{n+2}}}{\longrightarrow}& \mathbb{C}P^{n+1} \\ & (Re(z_1), Im(z_1), \cdots, Re(z_{n+1}), Im(z_{n+1}), r) &\mapsto& (z_1, \cdots, z_{n+1}, r) &\mapsto& [ z_1 : \cdots : z_{n+1} : r ] } \end{displaymath} and here the first map is the [[embedding of topological spaces|embedding]] of the disk $D^{2n+2}$ as a [[hemisphere]] in $\mathbb{R}^{2n+1} \hookrightarow \mathbb{R}^{2n+2} \simeq \mathbb{C}^{2n+2}$, while the second is the defining quotient space projection. Both of these are continuous, and hence so is their composite. The only remaining part of the action of $\mathbb{C}-\{0\}$ which fixes the conditions ${\vert z'\vert} = 0$ and $z'_{n+2}$ is $S^1 \subset \mathbb{C} \setminus \{0\}$ acting on the elements with $r = \{z'_{n+2}\} = 0$ by phase shifts on the $z_0, \cdots, z_{n+1}$. The quotient of this remaining action on $D^{2(n+1)}$ identifies its boundary $S^{2n+1}$-sphere with $\mathbb{C}P^{n}$, by prop. \ref{ComplexProjectiveSpaceAsS1Quotient}. This shows that the above square is a [[pushout]] diagram of underlying sets. By the nature of [[colimits]] in [[Top]] (\href{Top#DescriptionOfLimitsAndColimitsInTop}{this prop.}) it remains to see that the [[topological space|topology]] on $\mathbb{C}P^{n+1}$ is the [[final topology]] induced by the functions $D^{2n+2} \to \mathbb{C}P^{n+1}$ and $\mathbb{C}P^n \to \mathbb{C}P^{n+1}$, hence that a subset of $\mathbb{C}P^{n+1}$ is open precisely if its pre-images under these two functions are open. We saw above that $q_{D^{2n+2}}$ is continuous. Moreover, also the function $i_n \colon \mathbb{C}P^n \to \mathbb{C}P^{n+1}$ is continuous (by \href{projective+space#CanonicalInclusionOfProjectiveSpaces}{this lemma}). This shows that if a subset of $\mathbb{C}P^{n+1}$ is open, then its pre-images under these functions are open. It remains to see that if $S \subset \mathbb{C}P^{n+1}$ is a subset with $q_{S^{2n+2}}^{-1}(S) \subset D^{2n+2}$ open and $i_n^{-1}(S) \subset \mathbb{C}P^n$ open, then $S \subset \mathbb{C}P^{n+1}$ is open. Notice that $q_{\mathbb{C}^{n+2}}^{-1}(S)$ contains with every point also its [[orbit]] under the [[action]] of $\mathbb{C} \setminus \{0\}$, and that every open subset of $D^{2n+2}$ is a unions of open balls. By the above factorization of $q_{D^{2n+2}}$ this means that if $q_{D^{2n+2}}^{-1}(S)$ is open, then $q_{\mathbb{C}^{n+2}}^{-1}(S)$ is a union of open cyclinders, hence is open. By the nature of the [[quotient topology]], this means that $S \subset \mathbb{C}P^n$ is open. \end{proof} \hypertarget{homotopy}{}\subsubsection*{{Homotopy}}\label{homotopy} Write $\Sigma^\infty (\mathbb{C}P^\infty)_+ \in Ho(Spectra)$ for the [[H-group ring spectrum]] of $\mathbb{C}P^\infty \simeq B U(1)$ (see there for details). For $X \in Ho(Top)$ the [[homotopy type]] of a [[topological space]] in the [[classical homotopy category]], write \begin{displaymath} [\Sigma^\infty X_+ , \Sigma^\infty, \mathbb{C}P^\infty_+] \simeq [X, \Omega^\infty \Sigma^\infty \mathbb{C}P^\infty_+] \in Ab \end{displaymath} for the [[hom-group]] in the [[stable homotopy category]], which, by [[adjunction]], is equivalently computed in the [[classical homotopy category]] as shown on the right. Write \begin{displaymath} i \;\colon\; \mathbb{C}P^\infty \simeq B U(1) \simeq B U(1) \times \{1\} \hookrightarrow B U \times \mathbb{Z} \end{displaymath} for the inclusion into the [[classifying space]] for complex [[topological K-theory]] which classifies the inlusion of [[complex line bundles]] $E$ as [[virtual vector bundles]] $[E] - 0$. \begin{prop} \label{HGroupRingSpectrumSurjectsOntoTopologicalKTheory}\hypertarget{HGroupRingSpectrumSurjectsOntoTopologicalKTheory}{} For any $X \in Ho(Top)$ the [[ring homomorphism]] \begin{displaymath} i_\ast \;\colon\; [\Sigma^\infty X_+, \Sigma^\infty \mathbb{C}P_+] \longrightarrow K_{\mathbb{C}}(X) \end{displaymath} to [[topological K-theory]] is [[surjective function|surjective]]. \end{prop} This is due to (\hyperlink{Segal73}{Segal 73, prop. 1}). Prop. \ref{HGroupRingSpectrumSurjectsOntoTopologicalKTheory} is sharpened by \emph{[[Snaith's theorem]]}. See there for more. The version for [[real projective space]] is called the \emph{[[Kahn-Priddy theorem]]}. \# \hypertarget{Cohomology}{}\subsubsection*{{Homology and Cohomology}}\label{Cohomology} \hypertarget{ordinary}{}\paragraph*{{Ordinary}}\label{ordinary} \begin{prop} \label{OrdinaryCohomologyOfComplexProjectiveSpace}\hypertarget{OrdinaryCohomologyOfComplexProjectiveSpace}{} For $A \in$ [[Ab]] any [[abelian group]], then the [[ordinary homology]] [[homology groups|groups]] of complex projective space $\mathbb{C}P^n$ with [[coefficients]] in $A$ are \begin{displaymath} H_k(\mathbb{C}P^n,A)\simeq \left\{ \itexarray{ A & for \; k \;even\; and \; k \leq 2n \\ 0 & otherwise } \right. \,. \end{displaymath} Similarly the [[ordinary cohomology]] [[cohomology groups|groups]] of $\mathbb{C}P^n$ is \begin{displaymath} H^k(\mathbb{C}P^n,A) \simeq \left\{ \itexarray{ A & for \; k \;even\; and \; k \leq 2n \\ 0 & otherwise } \right. \,. \end{displaymath} Moreover, if $A$ carries the structure of a [[ring]] $R = (A, \cdot)$, then under the [[cup product]] the [[cohomology ring]] of $\mathbb{C}P^n$ is the the [[graded ring]] \begin{displaymath} H^\bullet(\mathbb{C}P^n, R) \simeq R[c_1] / (c_1^{n+1}) \end{displaymath} which is the [[quotient]] of the [[polynomial ring]] on a single generator $c_1$ in degree 2, by the relation that identifies [[cup products]] of more than $n$-copies of the generator $c_1$ with zero. Finally, the [[cohomology ring]] of the infinite-dimensional complex projective space is the [[formal power series ring]] in one generator: \begin{displaymath} H^\bullet(\mathbb{C}P^\infty, R) \simeq R[ [ c_1 ] ] \,. \end{displaymath} (Or else the [[polynomial ring]] $R[c_1]$, depending on how one chooses to extract a ring from a graded ring, see remark \ref{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}.) \end{prop} \begin{proof} First consider the case that the coefficients are the [[integers]] $A = \mathbb{Z}$. Since $\mathbb{C}P^n$ admits the structure of a [[CW-complex]] by prop. \ref{CellComplexStructureOnComplexProjectiveSpace}, we may compute its [[ordinary homology]] equivalently as its [[cellular homology]] (\href{Introduction+to+Stable+homotopy+theory+--+I#CelluarEquivalentToSingularFromSpectralSequence}{thm.}). By definition (\href{cellular+homology#CellularChainComplex}{defn.}) this is the [[chain homology]] of the chain complex of [[relative homology]] groups \begin{displaymath} \cdots \overset{\partial_{cell}}{\longrightarrow} H_{q+2}((\mathbb{C}P^n)_{q+2}, (\mathbb{C}P^n)_{q+1}) \overset{\partial_{cell}}{\longrightarrow} H_{q+1}((\mathbb{C}P^n)_{q+1}, (\mathbb{C}P^n)_{q}) \overset{\partial_{cell}}{\longrightarrow} H_{q}((\mathbb{C}P^n)_{q}, (\mathbb{C}P^n)_{q-1}) \overset{\partial_{cell}}{\longrightarrow} \cdots \,, \end{displaymath} where $(-)_q$ denotes the $q$th stage of the [[CW-complex]]-structure. Using the CW-complex structure provided by prop. \ref{CellComplexStructureOnComplexProjectiveSpace}, then there are cells only in every second degree, so that \begin{displaymath} (\mathbb{C}P^n)_{2k+1} = (\mathbb{C}P)_{2k} \end{displaymath} for all $k \in \mathbb{N}$. It follows that the cellular chain complex has a zero group in every second degree, so that all differentials vanish. Finally, since prop. \ref{CellComplexStructureOnComplexProjectiveSpace} says that $(\mathbb{C}P^n)_{2k+2}$ arises from $(\mathbb{C}P^n)_{2k+1} = (\mathbb{C}P^n)_{2k}$ by attaching a single $2k+2$-cell it follows that (by passage to [[reduced homology]]) \begin{displaymath} H_{2k}(\mathbb{C}P^n, \mathbb{Z}) \simeq \tilde H_{2k}(S^{2k})((\mathbb{C}P^n)_{2k}/(\mathbb{C}P^n)_{2k-1}) \simeq \tilde H_{2k}(S^{2k}) \simeq \mathbb{Z} \,. \end{displaymath} This establishes the claim for ordinary homology with integer coefficients. In particular this means that $H_q(\mathbb{C}P^n, \mathbb{Z})$ is a [[free abelian group]] for all $q$. Since free abelian groups are the [[projective objects]] in [[Ab]] (\href{projective+object#ProjectiveObjectsInAbAreFreeGroups}{prop.}) it follows (with the discussion at \emph{[[derived functors in homological algebra]]}) that the [[Ext]]-groups vanishe: \begin{displaymath} Ext^1(H_q(\mathbb{C}P^n, \mathbb{Z}),A) = 0 \end{displaymath} and the [[Tor]]-groups vanishes: \begin{displaymath} Tor_1(H_q(\mathbb{C}P^n), A) = 0 \,. \end{displaymath} With this, the statement about homology and cohomology groups with general coefficients follows with the [[universal coefficient theorem]] for ordinary homology (\href{universal+coefficient+theorem#TheoremInOrdinaryHomology}{thm.}) and for ordinary cohomology (\href{universal+coefficient+theorem#OrdinaryStatementInCohomology}{thm.}). Finally to see the action of the [[cup product]]: by definition this is the composite \begin{displaymath} \cup \;\colon\; H^\bullet(\mathbb{C}P^n, R) \otimes H^\bullet(\mathbb{C}P^n, R) \longrightarrow H^\bullet(\mathbb{C}P^n \times \mathbb{C}P^n , R) \overset{\Delta^\ast}{\longrightarrow} H^\bullet(\mathbb{C}P^n,R) \end{displaymath} of the ``cross-product'' map that appears in the [[Kunneth theorem]], and the pullback along the [[diagonal]] $\Delta\colon \mathbb{C}P^n \to \mathbb{C}P^n \times \mathbb{C}P^n$. Since, by the above, the groups $H^{2k}(\mathbb{C}P^n,R) \simeq R[2k]$ and $H^{2k+1}(\mathbb{C}P^n,R) = 0$ are free and finitely generated, the [[Kunneth theorem]] in ordinary cohomology applies (\href{Künneth+theorem#KunnethInOrdinaryCohomology}{prop.}) and says that the cross-product map above is an isomorphism. This shows that under cup product pairs of generators are sent to a generator, and so the statement $H^\bullet(\mathbb{C}P^n , R)\simeq R[c_1](c_1^{n+1})$ follows. This also implies that the projection maps \begin{displaymath} H^\bullet((\mathbb{C}P^\infty)_{2n+2}, R) = H^\bullet(\mathbb{C}P^{n+1}, R) \to H^\bullet(\mathbb{C}P^{n+}, R) = H^\bullet((\mathbb{C}P^\infty)_{2n}, R) \end{displaymath} are all [[epimorphisms]]. Therefore this sequence satisfies the [[Mittag-Leffler condition]] (\href{lim1#MittagLefflerCondition}{def.}, \href{lim1#MittagLefflerSatisfiedInParticularForTowerOfSurjections}{exmpl.}) and therefore the [[Milnor exact sequence]] for cohomology (\href{lim1#MilorSequenceForReducedCohomologyOnCWComplex}{prop.}) implies the last claim to be proven: \begin{displaymath} \begin{aligned} H^\bullet(\mathbb{C}P^\infty, R) \\ & \simeq H^\bullet( \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n , R) \\ &\simeq \underset{\longrightarrow}{\lim}_n H^\bullet(\mathbb{C}P^n, R) \\ &\simeq \underset{\longrightarrow}{\lim}_n ( R [c_1^E] / ((c_1)^{n+1}) ) \\ & \simeq R[ [ c_1 ] ] \,, \end{aligned} \end{displaymath} where the last step is \href{formal+scheme#FormalPowerSeries}{this prop.}. \end{proof} \begin{remark} \label{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}\hypertarget{ChoiceOfRingStructureOnGradedCohomologyGroupOfMultiplicativeCohomologyTheory}{} There is in general a choice to be made in interpreting the [[cohomology groups]] of a [[multiplicative cohomology theory]] $E$ as a [[ring]]: a priori $E^\bullet(X)$ is a sequence \begin{displaymath} \{E^n(X)\}_{n \in \mathbb{Z}} \end{displaymath} of [[abelian groups]], together with a system of group homomorphisms \begin{displaymath} E^{n_1}(X) \otimes E^{n_2}(X) \longrightarrow E^{n_1 + n_2}(X) \,, \end{displaymath} one for each pair $(n_1,n_2) \in \mathbb{Z}\times\mathbb{Z}$. In turning this into a single [[ring]] by forming [[formal sums]] of elements in the groups $E^n(X)$, there is in general the choice of whether allowing formal sums of only finitely many elements, or allowing arbitrary formal sums. In the former case the ring obtained is the [[direct sum]] \begin{displaymath} \oplus_{n \in \mathbb{N}} E^n(X) \end{displaymath} while in the latter case it is the [[Cartesian product]] \begin{displaymath} \prod_{n \in \mathbb{N}} E^n (X) \,. \end{displaymath} These differ in general. For instance if $E$ is [[ordinary cohomology]] with [[integer]] [[coefficients]] and $X$ is complex projective space $\mathbb{C}P^\infty$, then (prop. \ref{OrdinaryCohomologyOfComplexProjectiveSpace}) \begin{displaymath} E^n(X) = \left\{ \itexarray{ \mathbb{Z} & n \; even \\ 0 & otherwise } \right. \end{displaymath} and the product operation is given by \begin{displaymath} E^{2{n_1}}(X)\otimes E^{2 n_2}(X) \longrightarrow E^{2(n_1 + n_2)}(X) \end{displaymath} for all $n_1, n_2$ (and zero in odd degrees, necessarily). Now taking the [[direct sum]] of these, this is the [[polynomial ring]] on one generator (in degree 2) \begin{displaymath} \oplus_{n \in \mathbb{N}} E^n(X) \;\simeq\; \mathbb{Z}[c_1] \,. \end{displaymath} But taking the [[Cartesian product]], then this is the [[formal power series ring]] \begin{displaymath} \prod_{n \in \mathbb{N}} E^n(X) \;\simeq\; \mathbb{Z} [ [ c_1 ] ] \,. \end{displaymath} A priori both of these are sensible choices. The former is the usual choice in traditional [[algebraic topology]]. However, from the point of view of regarding [[ordinary cohomology]] theory as a [[multiplicative cohomology theory]] right away, then the second perspective tends to be more natural: The cohomology of $\mathbb{C}P^\infty$ is naturally computed as the [[inverse limit]] of the cohomolgies of the $\mathbb{C}P^n$, each of which unambiguously has the ring structure $\mathbb{Z}[c_1]/((c_1)^{n+1})$. So we may naturally take the limit in the [[category]] of [[commutative rings]] right away, instead of first taking it in $\mathbb{Z}$-indexed sequences of abelian groups, and then looking for ring structure on the result. But the limit taken in the category of rings gives the [[formal power series ring]] (see \href{formal+scheme#FormalPowerSeries}{here}). Incidentally, this is the default choice of ring structure for [[generalized (Eilenberg-Steenrod) cohomology|generalized]] [[multiplicative cohomology theories]] evaluated on $\mathbb{C}P^\infty$. In particular in [[complex oriented cohomology]] (see there) this choice is of paramount importance. See also for instance remark 1.1. in [[Jacob Lurie]]: \emph{[[A Survey of Elliptic Cohomology]]}. \end{remark} \hypertarget{complexoriented}{}\paragraph*{{Complex-oriented}}\label{complexoriented} \begin{prop} \label{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}\hypertarget{CohomologyRingOfBU1ForComplexOrientedCohomologyTheory}{} Given a [[complex oriented cohomology theory]] $(E^\bullet, c^E_1)$ (\href{complex+oriented+cohomology+theory#ComplexOrientedCohomologyTheory}{defn.}), then there is an [[isomorphism]] of [[graded rings]] \begin{displaymath} E^\bullet(\mathbb{C}P^\infty) \simeq E^\bullet(\ast)[ [ c_1^E ] ] \end{displaymath} between the $E$-[[cohomology ring]] of infinite-dimensional complex projective space and the [[formal power series]] in one generator of even degree over the $E$-[[cohomology ring]] of the point. \end{prop} \begin{proof} Using the [[CW-complex]]-structure on $\mathbb{C}P^\infty$ from prop. \ref{CellComplexStructureOnComplexProjectiveSpace}, given by inductively identifying $\mathbb{C}P^{n+1}$ with the result of attaching a single $2n$-cell to $\mathbb{C}P^n$. With this structure, the unique 2-cell inclusion $i \;\colon\; S^2 \hookrightarrow \mathbb{C}P^\infty$ is identified with the canonical map $S^2 \to B U(1)$. Then consider the [[Atiyah-Hirzebruch spectral sequence]] for the $E$-cohomology of $\mathbb{C}P^n$. \begin{displaymath} H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \;\Rightarrow\; E^\bullet(\mathbb{C}P^n) \,. \end{displaymath} Since, by prop. \ref{OrdinaryCohomologyOfComplexProjectiveSpace}, the [[ordinary cohomology]] with [[integer]] [[coefficients]] of projective space is \begin{displaymath} H^\bullet(\mathbb{C}P^n, \mathbb{Z}) \simeq \mathbb{Z}[c_1]/((c_1)^{n+1}) \,, \end{displaymath} where $c_1$ represents a unit in $H^2(S^2, \mathbb{Z})\simeq \mathbb{Z}$, and since similarly the [[ordinary homology]] of $\mathbb{C}P^n$ is a [[free abelian group]], hence a [[projective object]] in abelian groups (\href{projective+object#ProjectiveObjectsInAbAreFreeGroups}{prop.}), the [[Ext]]-group vanishes in each degree ($Ext^1(H_n(\mathbb{C}P^n), E^\bullet(\ast)) = 0$) and so the [[universal coefficient theorem]] (\href{universal+coefficient+theorem#OrdinaryStatementInCohomology}{prop.}) gives that the second page of the spectral sequence is \begin{displaymath} H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \simeq E^\bullet(\ast)[ c_1 ] / (c_1^{n+1}) \,. \end{displaymath} By the standard construction of the [[Atiyah-Hirzebruch spectral sequence]] (\href{Atiyah–Hirzebruch+spectral+sequence#ConstructionByFilteringTheBaseSpace}{here}) in this identification the element $c_1$ is identified with a generator of the [[relative cohomology]] \begin{displaymath} E^2((\mathbb{C}P^n)_2, (\mathbb{C}P^n)_1) \simeq \tilde E^2(S^2) \end{displaymath} (using, by the above, that this $S^2$ is the unique 2-cell of $\mathbb{C}P^n$ in the standard cell model). This means that $c_1$ is a permanent cocycle of the spectral sequence (in the kernel of all differentials) precisely if it arises via restriction from an element in $E^2(\mathbb{C}P^n)$ and hence precisely if there exists a complex orientation $c_1^E$ on $E$. Since this is the case by assumption on $E$, $c_1$ is a permanent cocycle. (For the fully detailed argument see (\hyperlink{Pedrotti16}{Pedrotti 16}).) The same argument applied to all elements in $E^\bullet(\ast)[c]$, or else the $E^\bullet(\ast)$-linearity of the differentials (\href{multiplicative+cohomology+theory#LinearityOfDifferentialsInSerreAHSSForMultiplicativeCohomologyTheory}{prop.}), implies that all these elements are permanent cocycles. Since the AHSS of a multiplicative cohomology theory is a [[multiplicative spectral sequence]] (\href{multiplicative+cohomology+theory#AHSSForMultiplicativeCohomologyTheoryIsMultiplicative}{prop.}) this implies that the differentials in fact vanish on all elements of $E^\bullet(\ast) [c_1] / (c_1^{n+1})$, hence that the given AHSS collapses on the second page to give \begin{displaymath} \mathcal{E}_\infty^{\bullet,\bullet} \simeq E^\bullet(\ast)[ c_1^{E} ] / ((c_1^E)^{n+1}) \end{displaymath} or in more detail: \begin{displaymath} \mathcal{E}_\infty^{p,\bullet} \simeq \left\{ \itexarray{ E^\bullet(\ast) & \text{if}\; p \leq 2n \; and\; even \\ 0 & otherwise } \right. \,. \end{displaymath} Moreover, since therefore all $\mathcal{E}_\infty^{p,\bullet}$ are [[free modules]] over $E^\bullet(\ast)$, and since the filter stage inclusions $F^{p+1} E^\bullet(X) \hookrightarrow F^{p}E^\bullet(X)$ are $E^\bullet(\ast)$-[[module]] homomorphisms (\href{multiplicative+cohomology+theory#RingAndModuleStructureOnCohomologyGroupsOfMultiplicativeCohomplogyTheory}{prop.}) the \href{spectral+sequence#ExtensionProblem}{extension problem} trivializes, in that all the [[short exact sequences]] \begin{displaymath} 0 \to F^{p+1}E^{p+\bullet}(X) \longrightarrow F^{p}E^{p+\bullet}(X) \longrightarrow \mathcal{E}_\infty^{p,\bullet} \to 0 \end{displaymath} [[split exact sequence|split]] (since the [[Ext]]-group $Ext^1_{E^\bullet(\ast)}(\mathcal{E}_\infty^{p,\bullet},-) = 0$ vanishes on the [[free module]], hence [[projective module]] $\mathcal{E}_\infty^{p,\bullet}$). In conclusion, this gives an isomorphism of graded rings \begin{displaymath} E^\bullet(\mathbb{C}P^n) \simeq \underset{p}{\oplus} \mathcal{E}_\infty^{p,\bullet} \simeq E^\bullet(\ast)[ c_1 ] / ((c_1^{E})^{n+1}) \,. \end{displaymath} A first consequence is that the projection maps \begin{displaymath} E^\bullet((\mathbb{C}P^\infty)_{2n+2}) = E^\bullet(\mathbb{C}P^{n+1}) \to E^\bullet(\mathbb{C}P^{n+}) = E^\bullet((\mathbb{C}P^\infty)_{2n}) \end{displaymath} are all [[epimorphisms]]. Therefore this sequence satisfies the [[Mittag-Leffler condition]] (\href{lim1#MittagLefflerCondition}{def.}, \href{lim1#MittagLefflerSatisfiedInParticularForTowerOfSurjections}{exmpl.}) and therefore the [[Milnor exact sequence]] for generalized cohomology (\href{lim1#MilorSequenceForReducedCohomologyOnCWComplex}{prop.}) finally implies the claim: \begin{displaymath} \begin{aligned} E^\bullet(B U(1)) & \simeq E^\bullet(\mathbb{C}P^\infty) \\ & \simeq E^\bullet( \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n ) \\ &\simeq \underset{\longrightarrow}{\lim}_n E^\bullet(\mathbb{C}P^n) \\ &\simeq \underset{\longrightarrow}{\lim}_n ( E^\bullet(\ast) [c_1^E] / ((c_1^E)^{n+1}) ) \\ & \simeq E^\bullet(\ast)[ [ c_1^E ] ] \,, \end{aligned} \end{displaymath} where the last step is \href{formal+scheme#FormalPowerSeries}{this prop.}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real projective space]] \item [[complex oriented cohomology]] \item [[classifying space]] \item [[Fubini-Study metric]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See also \begin{itemize}% \item [[Topospaces]], \emph{\href{http://topospaces.subwiki.org/wiki/Complex_projective_space}{Complex projective space}} \item Wikipedia, \emph{\href{https://en.wikipedia.org /wiki/Complex_projective_space}{Complex projective space}} \end{itemize} Computation of the [[stable homotopy groups]] of $\mathbb{C}P^\infty$ is due to \begin{itemize}% \item R. E. Mosher, \emph{Some stable homotopy of complex projective space}, Topology 7 (1968), 179-193 (\href{https://core.ac.uk/download/pdf/82547916.pdf}{pdf}) \item [[Graeme Segal]], \emph{The stable homotopy of complex of projective space}, The quarterly journal of mathematics (1973) 24 (1): 1-5. ([[Segal72.pdf:file]], \href{https://doi.org/10.1093/qmath/24.1.1}{doi:10.1093/qmath/24.1.1}) \end{itemize} (See also at \emph{[[Snaith's theorem]]}.) Detailed review of the [[Atiyah-Hirzebruch spectral sequence]] for [[complex oriented cohomology]] is in \begin{itemize}% \item [[Riccardo Pedrotti]], \emph{Complex oriented cohomology, generalized orientation and Thom isomorphism}, 2016, 2018 ([[PedrotticECohomology2018.pdf:file]]) \end{itemize} [[!redirects complex projective spaces]] [[!redirects infinite complex projective space]] [[!redirects infinite complex projective spaces]] \end{document}