\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{complex structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} [[!include homotopy - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterizations_of_integrability}{Characterizations of integrability}\dotfill \pageref*{characterizations_of_integrability} \linebreak \noindent\hyperlink{on_2dimensional_manifolds}{On 2-dimensional manifolds}\dotfill \pageref*{on_2dimensional_manifolds} \linebreak \noindent\hyperlink{relation_to_structures}{Relation to $Spin^c$-structures}\dotfill \pageref*{relation_to_structures} \linebreak \noindent\hyperlink{relation_to_hermitian_and_khler_structure}{Relation to Hermitian and K\"a{}hler structure}\dotfill \pageref*{relation_to_hermitian_and_khler_structure} \linebreak \noindent\hyperlink{moduli_stacks_of_complex_structures}{Moduli stacks of complex structures}\dotfill \pageref*{moduli_stacks_of_complex_structures} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{LinearComplexStructure}\hypertarget{LinearComplexStructure}{} A \emph{(linear) complex structure} on a [[vector space]] $V$ is an [[automorphism]] $J : V \to V$ that squares to minus the [[identity]]: $J \circ J = - Id$. \end{defn} More generally, an almost complex structure on a [[smooth manifold]] is a smoothly varying [[fiber]]wise complex structure on its [[tangent spaces]]: \begin{defn} \label{}\hypertarget{}{} An \emph{almost complex structure} on a [[smooth manifold]] $X$ (of even [[dimension]]) is a rank $(1,1)$-[[tensor field]] $J$, hence a smooth [[section]] $J \in \Gamma(T X \otimes T^* X)$, such that, over each point $x \in X$, $J$ is a linear complex structure, def. \ref{LinearComplexStructure}, on that [[tangent space]] $T_x X$ under the canonical identification $End T_x X \simeq T_x X\otimes T_x^* X$. \end{defn} Equivalently, stated more intrinsically: \begin{defn} \label{}\hypertarget{}{} An \emph{almost complex structure} on a [[smooth manifold]] $X$ of [[dimension]] $2 n$ is a [[reduction of the structure group]] of the [[tangent bundle]] to the [[complex numbers|complex]] [[general linear group]] along $GL(n,\mathbb{C}) \hookrightarrow GL(2n,\mathbb{R})$. \end{defn} \begin{remark} \label{InTermsOfSmoothStacks}\hypertarget{InTermsOfSmoothStacks}{} In terms of modulating maps of bundles into their [[smooth infinity-groupoid|smooth]] [[moduli stacks]], this means that an almost complex structure is a lift in the following [[diagram]] in [[Smooth∞Grpd]]: \begin{displaymath} \itexarray{ && \mathbf{B} GL(n,\mathbb{C}) \\ & {}^{\mathllap{alm.compl.str.}}\nearrow & \downarrow^{\mathrlap{}} \\ X &\underoverset{\tau}{tang.\,bund.}{\to}& \mathbf{B} GL(2n,\mathbb{R}) } \,. \end{displaymath} By further [[reduction of the structure group|reduction]] along the [[maximal compact subgroup]] inclusion of the [[unitary group]] this yields an [[almost Hermitian structure]] \begin{displaymath} \itexarray{ && \mathbf{B} U(n) \\ & {}^{\mathllap{herm.alm.compl.str.}}\nearrow & \downarrow^{\mathrlap{}} \\ X &\underoverset{\tau}{tang.\,bund.}{\to}& \mathbf{B} GL(2n,\mathbb{R}) } \,. \end{displaymath} \end{remark} \begin{defn} \label{}\hypertarget{}{} A \emph{complex structure} on a [[smooth manifold]] $X$ is the structure of a [[complex manifold]] on $X$. Every such defines an almost complex structure and almost complex structures arising this way are called \emph{integrable} (see also at \emph{[[integrability of G-structures]]} the section \emph{\href{integrability+of+G-structures#ExampleComplexStructure}{Examples -- Complex structure}}). \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterizations_of_integrability}{}\subsubsection*{{Characterizations of integrability}}\label{characterizations_of_integrability} The \emph{[[Newlander-Nirenberg theorem]]} states that an almost complex structure $J$ on a smooth manifold is integrable (see also at \emph{[[integrability of G-structures]]}) precisely if its [[Nijenhuis tensor]] vanishes, $N_J = 0$. See also at \emph{[[integrability of G-structures]]} the section \emph{\href{integrability+of+G-structures#ExampleComplexStructure}{Examples -- Complex structure}}. \hypertarget{on_2dimensional_manifolds}{}\subsubsection*{{On 2-dimensional manifolds}}\label{on_2dimensional_manifolds} \begin{prop} \label{}\hypertarget{}{} Every [[Riemannian metric]] on an [[orientation|oriented]] 2-[[dimension|dimensional]] [[manifold]] induces an almost complex structure given by forming orthogonal tangent vectors. \end{prop} \begin{prop} \label{In2dAnyAlmostComplexStructureIsIntegrable}\hypertarget{In2dAnyAlmostComplexStructureIsIntegrable}{} Every almost complex structure on a 2-[[dimension|dimensional]] [[manifold]] is integrable, hence is a complex structure. \end{prop} In the special case of [[real analytic manifolds]] this fact was known to [[Carl Friedrich Gauss]]. For the general case see for instance \hyperlink{Audin}{Audin, remark 3 on p. 47}. \hypertarget{relation_to_structures}{}\subsubsection*{{Relation to $Spin^c$-structures}}\label{relation_to_structures} Every almost complex structure canonically induces a [[spin{\tt \symbol{94}}c-structure]] by postcomposition with the universal [[characteristic map]] $\phi$ in the [[diagram]] \begin{displaymath} \itexarray{ \mathbf{B}U(n) &\stackrel{\phi}{\to}& \mathbf{B}Spin^c &\to& \mathbf{B}U(1) \\ &\searrow& \downarrow && \downarrow^{\mathrlap{}} \\ && \mathbf{B}SO(2n) &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 } \,. \end{displaymath} See at \emph{[[spin{\tt \symbol{94}}c-structure]]} for more. \hypertarget{relation_to_hermitian_and_khler_structure}{}\subsubsection*{{Relation to Hermitian and K\"a{}hler structure}}\label{relation_to_hermitian_and_khler_structure} \begin{itemize}% \item An almost complex structure equipped with a compatible [[Riemannian metric]] is a \emph{[[Hermitian structure]]}. \item An almost complex structure equipped with a compatible [[Riemannian structure]] and [[symplectic structure]] is a \emph{[[Kähler structure]]}. \end{itemize} \begin{tabular}{l|l|l} [[complex structure]]&+ [[Riemannian structure]]&+ [[symplectic structure]]\\ \hline [[complex structure]]&[[Hermitian structure]]&[[Kähler structure]]\\ \end{tabular} \hypertarget{moduli_stacks_of_complex_structures}{}\subsubsection*{{Moduli stacks of complex structures}}\label{moduli_stacks_of_complex_structures} One may consider the [[moduli stack of complex structures]] on a given manifold. For 2-dimensional manifolds these are famous as the Riemann [[moduli stacks of complex curves]]. They may also be expressed as moduli stacks of almost complex structures, see \href{moduli+space+of+curves#OverTheComplexNumbers}{here}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stable complex structure]] \item [[real structure]] \item [[quaternionic structure]] \item [[holomorphic vector bundle]], [[pseudoholomorphic vector bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item Mich\`e{}le Audin, \emph{Symplectic and almost complex manifolds} (\href{http://www-irma.u-strasbg.fr/~maudin/HolomorphicChapII.pdf}{pdf}) \end{itemize} Discussion from the point of view of [[integrable G-structures]] includes \begin{itemize}% \item [[Robert Bryant]], \emph{Remarks on the geometry of almost complex 6-manifolds}, The Asian Journal of Mathematics, vol. 10 no. 3 (September, 2006), pp. 561--606. (\href{http://arxiv.org/abs/math/0508428}{arXiv:math/0508428}) \end{itemize} A discussion of deformations of complex structures is in \begin{itemize}% \item [[Domenico Fiorenza]], \emph{[[domenicofiorenza:The periods map of a complex projective manifold. An oo-category perspective]]} \end{itemize} The \emph{[[moduli space of complex structures]]} on a manifold is discussed for instance from page 175 on of \begin{itemize}% \item [[Yongbin Ruan]], \emph{Symplectic topology and complex surfaces} in \emph{Geometry and analysis on complex manifolds} (1994) \end{itemize} and in \begin{itemize}% \item Yurii M. Burman, \emph{Relative moduli spaces of complex structures: an example} (\href{http://arxiv.org/abs/math/9903029}{arXiv:math/9903029}) \end{itemize} [[!redirects complex structures]] [[!redirects almost complex structure]] [[!redirects almost complex structures]] [[!redirects almost complex manifold]] [[!redirects almost complex manifolds]] [[!redirects linear complex structure]] [[!redirects linear complex structures]] \end{document}