\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{concrete sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{discrete_and_concrete_objects}{}\paragraph*{{Discrete and concrete objects}}\label{discrete_and_concrete_objects} [[!include discrete and concrete objects - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{on_a_concrete_site}{On a concrete site}\dotfill \pageref*{on_a_concrete_site} \linebreak \noindent\hyperlink{in_a_local_topos}{In a local topos}\dotfill \pageref*{in_a_local_topos} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{SliceOverConcreteObject}{Slice topos over a concrete object}\dotfill \pageref*{SliceOverConcreteObject} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} When regarding a [[sheaf]] as a [[space]] defined by how it is probed by test spaces, a \emph{concrete sheaf} is a generalized space that has (at least) an \emph{underlying [[set]] of points} out of which it is built. So a concrete sheaf models a [[space]] that is given by a set of points and a choice of which morphisms of [[set]]s from concrete test spaces into it count as ``structure preserving'' (e.g. count as smooth, when the sheaf models a [[smooth space]]). More in the intrinsic language of [[sheaves]], a \emph{concrete sheaf} is a [[sheaf]] on a [[concrete site]] $C$ that, while perhaps not [[representable functor|representable]], is ``quasi-representable'' in that it is a [[subobject]] of a sheaf of the form \begin{displaymath} U \mapsto Hom_{Set}(|U|, S) \end{displaymath} where $S$ is a [[set]] and $|U|$ is the [[set]] $|U| \coloneqq Hom_C({*}, U)$ of points underlying the object $U$ in the [[concrete site]] $C$. For the category of concrete sheaves $Conc(Sh(C))$, the [[global sections]] functor $Hom_{Conc(Sh(C))}(1,-):Conc(Sh(C))\to Set$ is [[faithful functor|faithful]], i.e. $Conc(Sh(C))$ is a [[concrete category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We discuss two definitions: the first one is more elementary and describes concrete sheaves explicitly in terms of properties of the underlying [[site]]. The second one is more abstract and more general, and describes them entirely [[topos theory|topos theoretically]]. \hypertarget{on_a_concrete_site}{}\subsubsection*{{On a concrete site}}\label{on_a_concrete_site} \begin{udef} A \textbf{[[concrete site]]} is a [[site]] $C$ with a [[terminal object]] $*$ such that \begin{enumerate}% \item the functor $Hom_C(*,-) : C \to Set$ is a [[faithful functor]]; \item for every [[coverage|covering family]] $\{f_i : U_i \to U\}$ in $C$ the morphism \begin{displaymath} \coprod_i Hom_C(*,f_i) : \coprod_i Hom_C(*, U_i) \to Hom_C(*, U) \end{displaymath} is [[surjective]]. \end{enumerate} \end{udef} For $X \in PSh(C)$ any [[presheaf]], write \begin{displaymath} \tilde X_U : X(U) \to Hom_{Set}(Hom_C(*,U), X(*)) \end{displaymath} for the [[adjunct]] of the restriction map \begin{displaymath} X(U) \times Hom_C(*,U) \to X(*) \,, \end{displaymath} which in turn is the adjunct of the component map of the functor \begin{displaymath} X_{*,U} . Hom_C(*,U) \to Hom_{Set}(X(U), X(*)) \,. \end{displaymath} \hypertarget{definition_3}{}\paragraph*{{Definition}}\label{definition_3} A [[presheaf]] $X : C^{op} \to Set$ on a [[concrete site]] is a \textbf{concrete presheaf} if for each $U \in C$ the map $\tilde X_U : X(U) \to Hom_{Set}(Hom_C(*,U), X(*))$ is [[injective]]. A \textbf{concrete sheaf} is a presheaf that is both concrete and a [[sheaf]]. So a concrete presheaf $X$ is a [[subobject]] of the presheaf $U \mapsto Hom_{Set}(Hom_C(*,U), X(*))$. Write $Conc(Sh(C)) \hookrightarrow Sh(C)$ for the [[full subcategory]] of the [[category of sheaves]] on concrete sheaves. \hypertarget{in_a_local_topos}{}\subsubsection*{{In a local topos}}\label{in_a_local_topos} A more abstract perspective on the \hyperlink{ConcSheafOnConcSite}{previous definition} is obtained by noticing the following. \begin{ulemma} The [[category of sheaves]] on a [[concrete site]] is a [[local topos]]. \end{ulemma} \begin{proof} Taking $U=*$ in the second condition defining a concrete site implies that any [[covering]] family of $*$ contains a [[split epimorphism]], or equivalently that the only covering [[sieve]] of $*$ is the maximal sieve consisting of all morphisms with [[target]] $*$. This means that a concrete site is in particular a [[local site]], which implies that its topos of sheaves is a [[local topos]]. \end{proof} In fact, we can formulate the definition of concrete sheaf inside any [[local topos]] $E$ over any base topos $S$: \begin{udef} Let \begin{displaymath} (Disc \dashv \Gamma \dashv Codisc) : E \stackrel{\stackrel{\overset{Disc}{\leftarrow}}{\underset{\Gamma}{\to}}}{\underset{Codisc}{\leftarrow}} S \end{displaymath} be a [[local geometric morphism]]. Since then by definition $S \stackrel{\overset{\Gamma}{\leftarrow}}{\underset{Codisc}{\hookrightarrow}} E$ is a [[subtopos]] the morphisms $V = \Gamma^{-1}(isos(S)) \subset Mor E$ that are inverted by $\Gamma$ are the [[local isomorphism]]s with respect to which the objects of $S$ are [[sheaves]]/$V$-[[local object]]s in $E$. The \textbf{concrete sheaves} are the objects of $E$ that are the $V$-[[separated objects]]. \end{udef} \begin{uprop} For $E = Sh(C) \stackrel{\Gamma = Hom(*,-)}{\to} Set$ the [[category of sheaves]] on a [[concrete site]], this is equivalent to the \hyperlink{ConcSheafOnConcSite}{previous definition}. \end{uprop} \begin{proof} Since $C$ is concrete, in the [[global sections]] [[geometric morphism]] $(Disc,\Gamma)\colon Sh(C) \to Set$, the [[direct image]] $\Gamma$ is evaluation on the point: $X\mapsto X(*)$. The further [[right adjoint]] $Codisc \colon Set\to Sh(C)$, sends a set $A$ to the functor $U\mapsto Hom_{Set}(Hom_C(*,U),A)$. Moreover, this right adjoint $Codisc$ is [[full and faithful functor|fully faithful]] and thus embeds $Set$ as a [[subtopos]] of $Sh(C)$. We observe that $(\Gamma \dashv Codisc) : Set \to Sh(C)$ is the [[localization]] of $Sh(C)$ at the set $\{Disc \Gamma U \to U | U \in C\}$ of counits of the adjunction $(Disc \dashv \Gamma)$ on representables: because if for $X \in Sh(C)$ we have that \begin{displaymath} \begin{aligned} Hom_{Sh(C)}(Disc \Gamma U \to U, X) & = (X(U) \to Hom_{Set}(\Gamma(U), \Gamma(X))) \\ & = (X(U) \to Hom_{Set}(Hom_C(*,U)), X(*)) \end{aligned} \end{displaymath} is an [[isomorphism]], then clearly $X = Codisc(X(*))$. On the other hand, comparison with the \hyperlink{ConcSheafOnConcSite}{previous definition} shows that this is a [[monomorphism]] precisely if $X$ is a concrete sheaf. But this is also the definition of a separated object. \end{proof} So the concrete sheaves on $C$ are precisely the [[separated presheaf|separated objects]] for this [[Lawvere-Tierney topology]] on $Sh(C)$ that corresponds to the subtopos $Codisc : S \hookrightarrow Sh(C)$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Let $\Gamma : E \to S$ be a [[local topos]]. From the definition of concrete sheaves as [[separated presheaves]] it follows immediately that \begin{uprop} The category of concrete sheaves $Conc_\Gamma(E)$ forms a [[reflective subcategory]] of $E$ \begin{displaymath} S \stackrel{\overset{\Gamma}{\leftarrow}}{\underset{Codisc}{\hookrightarrow}} Conc_\Gamma(E) \stackrel{\overset{Conc}{\leftarrow}}{\hookrightarrow} E \end{displaymath} which is a [[quasitopos]]. The left adjoint $Conc$ is \textbf{concretization} which sends a sheaf $X$ to the [[image]] sheaf \begin{displaymath} Conc X : U \mapsto Im(X(U) \to Hom_{Set}(Hom_C(*,U), X(*))) \,. \end{displaymath} \end{uprop} \hypertarget{SliceOverConcreteObject}{}\subsubsection*{{Slice topos over a concrete object}}\label{SliceOverConcreteObject} Let $(Disc \dashv \Gamma \dashv coDisc) : \mathcal{E} \to \mathcal{S}$ be a [[Grothendieck topos]] that is a [[local topos]] over $\mathcal{S}$ and let $X \in \mathcal{E}$ be a concrete object, equivalently an object such that the $(\Gamma \dashv coDisc)$-[[unit of an adjunction|counit]] $X \to coDisc \Gamma U$ is a [[monomorphism]]. We discuss properties of the [[over-topos]] $\mathcal{E}/X$. Notice that \begin{displaymath} e_0 \coloneqq (\Gamma \dashv coDisc) : \mathcal{S} \stackrel{\overset{\Gamma}{\leftarrow}}{\underset{coDisc}{\to}} \mathcal{E} \end{displaymath} is the canonical [[point of a topos|topos point]] of $\mathcal{E}$. \begin{uprop} For every [[global element]] $(x \in \Gamma(X)) : * \to X$ (for every $X \in \mathcal{E}$) there is a [[point of a topos|topos point]] of the form \begin{displaymath} (e_0,x) : \mathcal{S} \stackrel{\overset{x^*}{\leftarrow}}{\underset{x_*}{\to}} \mathcal{S}/\Gamma(X) \stackrel{\overset{\Gamma/X}{\leftarrow}}{\underset{coDisc/X}{\to}} \mathcal{E}/X \,. \end{displaymath} \end{uprop} This is discussed in detail at . \begin{uprop} \textbf{(relative concretization)} Let $X \in \mathcal{E}$ be concrete. Then the image under the $coDisc/X \circ \Gamma/X$-[[monad]] of any object $(A \to X) \in \mathcal{E}/X$ is an object $(\tilde A \to X)$ with $\tilde A$ being concrete. This $\tilde A$ is the finest concrete sheaf structure on $\Gamma A$ that extends $\Gamma A \to \Gamma X$ to a morphism of concrete sheaves. \end{uprop} \begin{proof} By definition of the we have that $coDisc/X \circ \Gamma/X (A \stackrel{f}{\to} X)$ is the [[pullback]] $\tilde A \to X$ in \begin{displaymath} \itexarray{ \tilde A &\to & coDisc \Gamma A \\ \downarrow && \downarrow^{\mathrlap{coDisc \Gamma A}} \\ X &\to& coDisc \Gamma X } \,, \end{displaymath} where the bottom morphism is the $(\Gamma \dashv coDisc)$-[[unit of an adjunction|unit]]. Since this is a [[monomorphism]] by assumption on $X$ it follows that $\tilde A\to coDisc \Gamma A$ is a monomorphism. Since $coDisc$ is a [[full and faithful functor]] by assumption on $\mathcal{E}$ and $\Gamma$ is a [[right adjoint]] it follows that the [[adjunct]] $\Gamma \tilde A \to \Gamma coDisc\Gamma A \stackrel{\simeq}{\to} \Gamma A$ is a monomorphism, as is its image $coDisc \Gamma \tilde A\to coDisc \Gamma A$ under the [[right adjoint]] $coDisc$. Then by the we have a commuting diagram \begin{displaymath} \itexarray{ && coDisc \Gamma \tilde A \\ & \nearrow & \downarrow \\ \tilde A &\to& coDisc \Gamma A } \,, \end{displaymath} where the bottom and the right morphisms are [[monomorphism]]s. Therefore also the diagonal morphism, the $(\Gamma \dashv coDisc)$-unit on $\tilde A$, is a monomorphism, and hence $\tilde A$ is concrete. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The concrete sheaves on the [[concrete site]] [[CartSp]] are the [[diffeological space]]s. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{concrete sheaf} \item [[concrete (∞,1)-sheaf]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of quasitoposes of concrete sheaves goes back to \begin{itemize}% \item [[Eduardo Dubuc]], \emph{Concrete quasitopoi} , Lecture Notes in Math. 753 (1979), 239--254 \end{itemize} and is further developed in \begin{itemize}% \item [[Eduardo Dubuc]], L. Espanol, \emph{Quasitopoi over a base category} (\href{http://arxiv.org/abs/math.CT/0612727}{arXiv:math.CT/0612727}) . \end{itemize} A review of categories of concrete sheaves, with special attention to sheaves on [[CartSp]], i.e. to [[diffeological space]]s is in \begin{itemize}% \item [[John Baez]], [[Alex Hoffnung]], \emph{Convenient Categories of Smooth Spaces}, Trans. Amer. Math. Soc. 363 (11), 2011 (\href{http://arxiv.org/abs/0807.1704}{arXiv}) \end{itemize} The characterization of concrete sheaves in terms of the extra right adjoint of a [[local topos]] originated in \href{http://nforum.ncatlab.org/comments.php?DiscussionID=1955}{discussion} with [[David Carchedi]]. [[!redirects concrete sheaves]] [[!redirects concrete presheaf]] [[!redirects concrete presheaves]] \end{document}