\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{concrete structure} \hypertarget{concrete_and_abstract_structures}{}\section*{{Concrete and abstract structures}}\label{concrete_and_abstract_structures} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{groups}{Groups}\dotfill \pageref*{groups} \linebreak \noindent\hyperlink{categories}{Categories}\dotfill \pageref*{categories} \linebreak \noindent\hyperlink{vector_spaces}{Vector spaces}\dotfill \pageref*{vector_spaces} \linebreak \noindent\hyperlink{hilbert_spaces}{Hilbert spaces}\dotfill \pageref*{hilbert_spaces} \linebreak \noindent\hyperlink{operator_algebras}{Operator algebras}\dotfill \pageref*{operator_algebras} \linebreak \noindent\hyperlink{manifolds_and_varieties}{Manifolds and varieties}\dotfill \pageref*{manifolds_and_varieties} \linebreak \noindent\hyperlink{sets}{Sets}\dotfill \pageref*{sets} \linebreak \noindent\hyperlink{points}{Points}\dotfill \pageref*{points} \linebreak \noindent\hyperlink{concrete_objects}{Concrete objects}\dotfill \pageref*{concrete_objects} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Many concepts from ordinary mathematics were originally developed in the course of a particular application, such that the original definition of the concept is tied to that application. The modern definition (typically some kind of [[structured set]]) is then obtained by a process of abstraction. Sometimes this history is remembered in the terminology, often with the original notion being called \emph{concrete} and the later notion called \emph{abstract}. It then becomes possible to define the concrete notion in terms of the abstract one (so giving an \emph{abstract} definition of the original \emph{concrete} concept); usually, a concrete structure is then an abstract structure equipped with some [[extra stuff]]. Sometimes there is also a [[representation theorem]] showing that every abstract structure arises from some concrete structure (but sometimes this is false). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} We list here only examples where the concrete meaning has historically been the default meaning for at least some authors or where at least one of the adjectives `concrete' or `abstract' have been used. \hypertarget{groups}{}\subsubsection*{{Groups}}\label{groups} Given a [[set]] $X$, the [[permutation group]] on $X$ is the set of [[permutations]] on $X$; consider a [[subset]] of this that includes the [[identity function]] and is closed under [[composition]] and taking [[inverse functions]]. This is the original notion of \textbf{concrete group} due to [[Évariste Galois]]. Abstracting from this, we get the modern notion of \textbf{abstract [[group]]} as a set equipped with an appropriate operation (taking the place of composition of permutations). Much of the early work on group theory dealt with symmetry groups in [[geometry]], giving a geometric notion of concrete group in which $X$ is a [[space]] instead of a [[set]], although (except perhaps in [[constructive mathematics]] without the [[fan theorem]]) the relevant spaces form a [[concrete category]] and so the elements of the group can still be viewed as permutations of an [[underlying set]]. We can now give an \emph{abstract} definition of the notion of \emph{concrete} group: An abstract group $G$ becomes a \textbf{concrete group} on the set $X$ once it is given a [[free action]] of $G$ on $X$. The [[Cayley theorem]] shows that every group may be made into a concrete group. Of course, if we generalise from [[Set]] to an arbitrary [[category]] (whether thought of as a category of spaces or not), then every group is \emph{already} a concrete group, identifying a group with the [[automorphism group]] of a [[pointed category|pointed]] [[connected category|connected]] [[groupoid]]. \hypertarget{categories}{}\subsubsection*{{Categories}}\label{categories} Unlike groups, [[categories]] were first defined in full modern abstraction. (At least, modern for the 20th century; by the end of the 21st century, it may seem old-fashioned not to start with weak $(\infty,1)$-[[(infinity,1)-category|categories]].) But in light of the motivating examples and [[Bourbaki]]'s prior theory of structures, we can anachronistically define a \textbf{concrete category} as any category of [[structured sets]] (as defined there). Of course, an \textbf{abstract category} is the usual notion of [[category]]. Then the abstract definition of a \textbf{[[concrete category]]} is a category equipped with a [[faithful functor]] to [[Set]]; see [[structured set]] again for the equivalence. \hypertarget{vector_spaces}{}\subsubsection*{{Vector spaces}}\label{vector_spaces} The original [[vector spaces]] were [[Cartesian spaces]]: $\mathbb{R}^n$, where $\mathbb{R}$ is the [[real line]] and $n$ is a [[natural number]]. This generalises easily to $K^c$, where $K$ is any [[field]] and $c$ is any [[cardinal number]]; we may call such a \textbf{concrete vector space}. Unlike with groups, there is no need (in [[classical mathematics]]) to consider [[subspaces]] of $K^c$ closed under [[linear combinations]], since these are all isomorphic to $K^d$ for $d \leq c$. Then an \textbf{abstract vector space}, which came later, is a [[module]] over $K$ thought of as a [[commutative ring]]. The abstract definition of a \textbf{concrete vector space} is an abstract vector space equipped with a [[basis]]. Using the [[axiom of choice]], we may prove that every abstract vector space has such a concrete structure. \hypertarget{hilbert_spaces}{}\subsubsection*{{Hilbert spaces}}\label{hilbert_spaces} The original notion of [[Hilbert space]] (the one used by [[David Hilbert]]) was $L^2(\mathbb{R})$, the [[Lebesgue space]] on the [[real line]] (with [[Lebesgue measure]]) of exponent $2$. This immediately generalises to $L^2(X)$, where $X$ is any [[measure space]]. As a special case, if $X$ is a [[discrete space|discrete]] measure space (a [[set]] equipped with [[counting measure]]), then we have a topological version of the concrete vector space $K^c$. Either of these (any measure space or only a discrete measure space) may be taken as a \textbf{concrete Hilbert space}, while the modern notion is an \textbf{abstract Hilbert space}. An [[orthonormal basis]] on an abstract Hilbert space gives it the structure of a \textbf{concrete Hilbert space} (in the stricter sense). \hypertarget{operator_algebras}{}\subsubsection*{{Operator algebras}}\label{operator_algebras} With [[operator algebras]], we have the curious situation that special names may still be found in the literature to distinguish the concrete and abstract structures. Let $H$ be a [[Hilbert space]] over the [[complex numbers]] and consider the $*$-[[star-algebra|algebra]] $B(H)$ of [[bounded linear operators]] from $H$ to itself. A \textbf{$C^*$-[[C-star-algebra|algebra]]} is a sub-$*$-algebra of $B(H)$ that is [[closed subspace|closed]] in the [[norm topology]]; a \textbf{[[von Neumann algebra]]} is a sub-$*$-algebra of $B(H)$ that is closed in the [[weak operator topology]] (a stronger condition). On the abstract side, a \textbf{$B^*$-[[B-star-algebra|algebra]]} is a [[Banach algebra|Banach]] $*$-algebra such that ${\|x^* x\|} = {\|x\|}^2$ always holds, while a \textbf{$W^*$-[[W-star-algebra|algebra]]} is a $B^*$-algebra with a [[predual]] as a [[Banach space]]. It is then a theorem that (as defined above) every $C^*$-algebra is a $B^*$-algebra, and every von Neumann algebra is a $W^*$-algebra, so we may abstractly define a \textbf{$C^*$-algebra} to be a $B^*$-algebra with a [[faithful representation|faithful]] [[representation]] on a Hilbert space, and similarly define a \textbf{von Neumann algebra} to be a $W^*$-algebra with a free action on a Hilbert space. The representation theorem here is that every $B^*$-algebra may be given the structure of a $C^*$-algebra, and in fact the term `$B^*$-algebra' is nearly obsolete. Similarly, every $W^*$-algebra may be given the structure of a von Neumann algebra, but here both terms may yet be found (and even distinguished such that a von Neumann algebra comes with a representation on a Hilbert space but a $W^*$-algebra does not). \hypertarget{manifolds_and_varieties}{}\subsubsection*{{Manifolds and varieties}}\label{manifolds_and_varieties} The original [[algebraic varieties]] were [[subspaces]] of [[affine spaces]] or [[projective spaces]] given as the [[zero set]]s of [[algebraic function]]s; these are \textbf{concrete varieties}. The modern notion of varieties as certain [[schemes]], the \textbf{abstract varieties}, is much more general. Similarly, [[manifolds]] can be viewed as [[subspaces]] of [[Cartesian spaces]] with locally invertible local parametrisations ---\textbf{concrete manifolds}--- or as abstract sets of points equipped with an [[atlas]] of locally invertible local charts ---\textbf{abstract manifolds}. Both concepts were used from the earliest days; the [[Whitney embedding theorem]] shows their equivalence (at least if the abstract manifolds are assumed to be [[second-countable space|second-countable]] and [[Hausdorff space|Hausdorff]], as is common). \hypertarget{sets}{}\subsubsection*{{Sets}}\label{sets} One might view the [[sets]] of [[material set theory]] as \textbf{concrete sets} and the sets of [[structural set theory]] as \textbf{abstract sets} (a term used at least by [[Lawvere]]). The abstract definition of a concrete set is then that given at [[pure set]]. There is also a more na\"i{}ve version of a \textbf{concrete set} as a [[subset]] of a given [[ambient set]]; these were the first sets studied, predating [[set theory]] as such. \hypertarget{points}{}\subsubsection*{{Points}}\label{points} A \textbf{concrete [[point]]} in a [[set]] $X$ is an [[element]] of $X$, an \textbf{abstract point} is a [[singleton]], and the abstract definition of \textbf{concrete point} in $X$ is a [[function]] to $X$ from an abstract point. The concrete definition of concrete point doesn't generalise from [[Set]] to arbitrary [[categories]], but the others do: an \textbf{abstract point} is a [[terminal object]], and a \textbf{concrete point} is a [[global element]]. \hypertarget{concrete_objects}{}\subsection*{{Concrete objects}}\label{concrete_objects} Since all of these concrete and abstract objects literally are [[objects]] in various [[categories]], it would be nice to use the terms `concrete object' and `abstract object' to refer to them collectively. However, there is another meaning of `[[concrete object]]', so I have gone for the vaguer term `structure' instead (justified since they are all objects in [[concrete categories]] and so are sets with [[extra structure]] \ldots{} with the exception of the concrete and abstract categories themselves!). There is a relationship: concrete objects generalise [[concrete sheaves]], which are concrete in the sense of having an [[underlying set]] of points, similar to how a concrete variety has a set of points from an affine or projective space. However, it's not really an example of the concept on this page, as fair as I can tell. [[!redirects concrete structure]] [[!redirects concrete structures]] [[!redirects abstract structure]] [[!redirects abstract structures]] [[!redirects concrete or abstract structure]] [[!redirects concrete or abstract structures]] [[!redirects concrete and abstract structure]] [[!redirects concrete and abstract structures]] [[!redirects concrete group]] [[!redirects concrete groups]] \end{document}