\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{conic section} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{over_the_real_numbers}{Over the real numbers}\dotfill \pageref*{over_the_real_numbers} \linebreak \noindent\hyperlink{stereographic_projection}{Stereographic projection}\dotfill \pageref*{stereographic_projection} \linebreak \noindent\hyperlink{projective_duality}{Projective duality}\dotfill \pageref*{projective_duality} \linebreak \noindent\hyperlink{pascals_mystic_hexagon}{Pascal's ``mystic hexagon''}\dotfill \pageref*{pascals_mystic_hexagon} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be a [[field]]. A \emph{conic section} over $k$ is the [[zero locus|zero set]] of a degree 2 [[polynomial]] $p(x, y) \in k[x, y]$ in the [[affine space|affine plane]] $\mathbb{A}^2(k)$, or better yet the zero set of a [[homogeneous polynomial]] $p(x, y, z)$ of degree 2 in the [[projective space|projective plane]] $\mathbb{P}^2(k)$. \hypertarget{over_the_real_numbers}{}\subsection*{{Over the real numbers}}\label{over_the_real_numbers} In the classical case $k = \mathbb{R}$ of [[real numbers]], conic sections may be pictured in terms of [[intersections]] of a standard [[cone]] $x^2 + y^2 - z^2 = 0$ in affine 3-space with various affine hyperplanes (hence the name, ``conic section''). In this picture, \emph{nonsingular} conic sections are classified (up to [[automorphisms]] of the affine plane) by the sign of the [[discriminant]] of $p$. In other words, if we write $p(x, y) = a x^2 + b x y + c y^2 + \lambda(x, y)$ where $deg(\lambda) = 1$ and put $D = b^2 - 4 a c$, then an isomorphism class is one of three types: ellipses (when $D \lt 0$), parabolas ($D = 0$), and hyperbolas ($D \gt 0$). Of course when we admit possibly singular conic sections, we get further isomorphism classes involving some degree of degeneracy (e.g., two lines, a double line, etc.). The distinctions between [[ellipse]], [[parabola]], and [[hyperbola]] are artifacts of affine geometry: if we instead consider conic sections as projective [[algebraic variety|subvarieties]] of $\mathbb{P}^2(\mathbb{R})$, then considered up to projective transformations (automorphisms of the projective plane), these distinctions evaporate and there is really only one kind of nonsingular conic section. Put differently: if we fix a representation $\mathbb{P}^2(\mathbb{R}) = \mathbb{A}^2(\mathbb{R}) \sqcup L$ where $L$ is a chosen ``line at infinity'', then in the original classification up to affine transformations, i.e., the subgroup of projective transformations which take $L$ to itself, ellipses are those conic sections which do not intersect $L$, parabolas are those which intersect $L$ in a double point, and hyperbolas are those which intersect $L$ in two points. By enlarging to the group of all projective transformations, we can move $L$ to a line which \emph{does} intersect an ``ellipse'' in two points, making it a ``hyperbola'' with respect to the new coordinate system, etc. \hypertarget{stereographic_projection}{}\subsection*{{Stereographic projection}}\label{stereographic_projection} Considered in terms of projective geometry, all \emph{pointed}\footnote{We took care to say \emph{pointed}: note that depending on the field $k$, there might not even be a solution point on the conic $C$, even if $C$ is by all rights nonsingular. For example, consider $p(x, y) = x^2 + y^2 + 1$ over $\mathbb{R}$. Of course we can relax again if $k$ is algebraically closed.} nonsingular conic sections $C \subset \mathbb{P}^2(k)$ are isomorphic and can be identified explicitly with a projective line $\mathbb{P}^1(k)$ by means of a [[stereographic projection]]. Geometrically, if $p$ is the chosen basepoint of $C$ and $L \subset \mathbb{P}^2(k)$ is a line not incident to $p$, then for any other point $q$ of $C$ the unique line $L(p, q)$ incident to $p$ and $q$ intersects $L$ in exactly one point, denoted $\phi(q)$. (Here $\phi(p)$ to be the intersection of the \emph{tangent} to $p$ at $C$ with $L$; this can be considered the basepoint of $L$.) In the opposite direction, to each point $x$ of $L$, the line $L(p, x)$ intersects $C$ in $p$ and (since a quadratic with one root will also have another root) another point $q$ (which might be the same as $p$; this happens precisely when $L(p, x)$ is the tangent at $p$); this gives the inverse $\phi^{-1}(x) = q$. In this way we obtain an isomorphism $\phi: C \to L$ of subvarieties. Working over an [[algebraically closed field]] $k$, where every nonsingular conic $C$ has a point, we may conclude that $C$ is isomorphic (as a projective variety) to $\mathbb{P}^1(k)$. Hence $C$ is a curve of [[genus]] $0$. \hypertarget{projective_duality}{}\subsection*{{Projective duality}}\label{projective_duality} Working over an [[algebraically closed field]] $k$ (let us assume the [[characteristic]] is not $2$), all nondegenerate [[quadratic forms]] on a vector space $V$ are isomorphic and we may fix one as standard. For example, for $V = k^3$, we may fix attention on the quadratic form $q(x, y, z) = x^2 + y^2 + z^2$, which determines a conic section $C \subset \mathbb{P}^2(k)$ and an accompanying nondegenerate symmetric [[bilinear form]] $\langle-, -\rangle_q: V \times V \to k$. Projective duality relative to $C$ is the projectivization of linear duality with respect to $\langle -, - \rangle$, which takes a linear subspace $L$ to its [[orthogonality|orthogonal dual]] $L^\perp = \{v \in V: (\forall w \in L)\; \langle v, w \rangle = 0\}$. We note that the orthogonal dual is an involution that takes joins of subspaces to meets and vice-versa. This construction descends through the quotient $k^3 \backslash \{0\} \to \mathbb{P}^2(k)$ to give an operation that takes points in $\mathbb{P}^2(k)$ (lines in $k^3$) to lines in $\mathbb{P}^2(k)$ (hyperplanes in $k^3$), and vice-versa, and moreover takes a join of two distinct points (the line incident to them) to the meet of their dual lines (the point of their intersection). This duality may be visualized thus: given a nondegenerate conic $C$ and a point $p$ off of $C$, draw the two lines incident to $p$ that are tangent to $C$, and pass to the line incident to the tangent points. (This is easier to visualize by imagining $k = \mathbb{R}$ and considering a point $p$ exterior to say an ellipse $C$.) This defines the line that is projectively dual to $p$ (dual with respect to the conic $C$); if $p$ is \emph{on} $C$, then the same procedure works by considering the two tangent points as infinitesimally close to $C$, so that the line between them is the tangent line at $p$: the projective dual of $p$ on $C$ is its tangent line (this is the case where the line in $k^3$ corresponding to $p$ is isotropic with respect to the bilinear form). The entire procedure can be reversed and gives an anti-[[involution]] on the [[poset]] of flats of $\mathbb{P}^2(k)$, interchanging points and lines and interchanging meets and joins. More generally, projective duality can be described in terms of an orthogonality map $\mathbb{P}(V) \to \mathbb{P}(V^\ast)$, where $V^\ast$ is the linear dual of $V$, which maps a subvariety to a corresponding dual ``envelope'' subvariety. This is explored in \hyperlink{GKZ}{GKZ}. The role of the conic section (or generally a conic hypersurface) is simply to set up an explicit self-duality $\mathbb{P}(V^\ast) \cong \mathbb{P}(V)$. \hypertarget{pascals_mystic_hexagon}{}\subsection*{{Pascal's ``mystic hexagon''}}\label{pascals_mystic_hexagon} (\ldots{}) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item I.M. Gel'fand, M. Kapranov, A. Zelevinsky, \emph{Discriminants, Resultants, and Multidimensional Determinants}, Birkh\"a{}user 2008 (paperback edition). \end{itemize} [[!redirects conic sections]] [[!redirects conic]] [[!redirects conics]] \end{document}