\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connected limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{construction_from_pullbacks_and_equalizers}{Construction from pullbacks and equalizers}\dotfill \pageref*{construction_from_pullbacks_and_equalizers} \linebreak \noindent\hyperlink{preservation_from_wide_pullbacks}{Preservation from wide pullbacks}\dotfill \pageref*{preservation_from_wide_pullbacks} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{connected limit} is a [[limit]] over a [[connected category]]. Similarly, a \textbf{connected colimit} is a colimit over a connected category. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The following are all connected limits: \begin{itemize}% \item [[pullbacks]] \item [[wide pullbacks]] \item [[equalizers]] \item [[cofiltered limits]] \item [[split idempotents]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{construction_from_pullbacks_and_equalizers}{}\subsubsection*{{Construction from pullbacks and equalizers}}\label{construction_from_pullbacks_and_equalizers} \begin{theorem} \label{PbEqToFinConnLim}\hypertarget{PbEqToFinConnLim}{} If a category $C$ has [[pullbacks]] and [[equalizers]], then it has all [[finite limit|finite]] connected limits. \end{theorem} \begin{proof} Let $I$ be a finite connected category and $F\colon I\to C$ a functor. Since $I$ is connected, it is inhabited; choose some object $x_0\in I$. For each object $x\in I$, let $\ell(x)$ be the length of the shortest [[zigzag]] from $x_0$ to $x$. Now order the objects of $I$ as $x_0, x_1, \dots, x_n$ such that for all $i$ we have $\ell(x_i) \le \ell(x_{i+i})$. Now we inductively define objects $P_i\in C$, for $0\le i\le n$, with projections $p_{i j}\colon P_i \to F(x_j)$ for $j\le i$. We begin with $P_0 = x_0$ and $p_{0 0}= 1_{x_0}$. Assuming $P_i$ and $p_{i j}$ defined, choose a zigzag from $x_0$ to $x_{i+1}$ of minimal length, say \begin{displaymath} x_0 \leftrightarrow y_1 \leftrightarrow \dots \leftrightarrow y_k \leftrightarrow x_{i+1}. \end{displaymath} By our choice of the ordering of the objects of $I$, we have $y_k = x_j$ for some $j\le i$, and thus we have $q = p_{i j}\colon P_i \to y_k$. If the final arrow $y_k \leftrightarrow x_{i+1}$ in the zigzag is directed as $y_k \to x_{i+1}$, then let $P_{i+1} = P_i$, let $p_{i+1, i+1}$ be the composite $P_i \xrightarrow{q} F(y_k) \to F(x_{i+1})$, and keep the other $p_{i j}$ unchanged. On the other hand, if $y_k \leftrightarrow x_{i+1}$ is directed as $y_k \leftarrow x_{i+1}$, let $P_{i+1}$ be the pullback \begin{displaymath} \itexarray{ & P_{i+1} & \to & P_i \\ ^{p_{i+1,i+1}} & \downarrow & & \downarrow^q \\ & F(x_{i+1}) & \to & F(y_k) } \end{displaymath} and define $p_{i+1,j}$ for $j\le i$ by composition with $P_{i+1}\to P_i$. At the end of this procedure, we have an object $P_n$ with projections $p_{n,j}\colon P_n \to F(x_j)$ for all objects $x_j\in I$. Now we order the morphisms in $I$ as $g_0,\dots,g_m$ and define, inductively, an object $Q_i$ with a morphism $q_i\colon Q_i \to P_n$. We begin with $Q_0 = P_n$ and $q_0 = 1_{P_n}$. Given $Q_i$ and $q_i$, we let $e\colon Q_{i+1} \to Q_{i}$ be the equalizer of $F(g_{i+1}) \circ p_{n,?} \circ q_i$ and $p_{n,?} \circ q_i$, where the ?s denote the indices of the objects that are the source and target of $g_{i+1}$. We then set $q_{i+1} = q_i \circ e$. At the end of this procedure, we have an object $Q_{m+1}$ together with a cone over the diagram $F$, which is easily verified to be a limit of $F$. \end{proof} Similarly, arbitrary connected limits may be built from [[wide pullbacks]] and equalizers. \begin{theorem} \label{internalsum}\hypertarget{internalsum}{} Let $C$ be (finitely) complete, and let $X$ be an object of $C$. Then the forgetful functor \begin{displaymath} \sum_X: C/X \to C \end{displaymath} preserves and reflects (finite) connected limits. \end{theorem} \begin{proof} The wide pullback of the diagram $f_i: X_i \to X$ where $f_i = 1_X$ for all $i$ is clearly $X$, as is the equalizer of the pair of identity arrows. Since the product functor $C \times C \to C$ preserves arbitrary limits, we see that \begin{displaymath} X \times lim (c_i \stackrel{g_i}{\to} c) = (lim X_i \stackrel{f_i = 1_X}{\to} X) \times (lim c_i \stackrel{g_i}{\to} c) = lim X \times c_i \stackrel{1 \times g_i}{\to} X \times c, \end{displaymath} i.e., $X \times -$ preserves wide pullbacks. The same line of argument shows $X \times -$ preserves equalizers, so $X \times -$ preserves connected limits. The functor $X \times -$ carries a canonical [[comonad]] structure, whose category of coalgebras is $C/X$. The forgetful functor $C/X \to C$ is comonadic, and thus preserves and reflects any class of limits preserved by the comonad $X \times -$. Thus $\sum_X: C/X \to C$ preserves and reflects all connected limits. \end{proof} \hypertarget{preservation_from_wide_pullbacks}{}\subsubsection*{{Preservation from wide pullbacks}}\label{preservation_from_wide_pullbacks} Recall that a [[wide pullback]] is a limit over a [[diagram]] whose underlying shape is the [[poset]] obtained by [[free functor|freely]] adjoining a [[top element|terminal element]] to a [[set|discrete poset]], which is certainly connected. It is not true that if $C$ has wide pullbacks then it has connected limits. The [[saturated class of limits|saturation]] of the class of wide pullbacks is the class of connected and ``simply connected'' limits (limits over categories $C$ whose groupoid reflection $\Pi_1(C)$ is trivial). However, the following is true. \begin{theorem} \label{PreservesWidePbToConnected}\hypertarget{PreservesWidePbToConnected}{} Let $C$ be a complete category, and let $D$ be [[locally small category|locally small]]. Then a functor $G\colon C \to D$ preserves connected limits if and only if it preserves wide pullbacks. \end{theorem} \begin{proof} The forward direction is clear since wide pullbacks are examples of connected limits. Now suppose $G\colon C \to D$ preserves wide pullbacks. Then \begin{equation} C \stackrel{G}{\to} D \stackrel{hom(d, -)}{\to} Set \label{Gwithhom}\end{equation} preserves wide pullbacks for every object $d$ of $D$. Put $I = hom(d, G 1)$. The underlying functor \begin{displaymath} \sum\colon Set/I \to Set \end{displaymath} reflects and preserves connected limits and in particular wide pullbacks, so that the evident lift \begin{displaymath} \hom(d, G-)\colon C \to Set/I \end{displaymath} preserves wide pullbacks. It also preserves the terminal object, hence by \href{/nlab/show/wide+pullback#WidePbToComplete}{this proposition} it preserves arbitrary limits. Therefore the composite \begin{displaymath} C \stackrel{\hom(d, G-)}{\to} Set/I \stackrel{\sum}{\to} Set \end{displaymath} preserves connected limits, for every object $d$. Since this is the same composite as in \eqref{Gwithhom}, and since the representables $\hom(d, -)$ jointly reflect arbitrary limits, we conclude that $G$ preserves connected limits. \end{proof} The analogous argument works for finite limits. In particular, for $C$ finitely complete, a functor $G\colon C \to D$ that preserves pullbacks also preserves [[equalizers]]. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[parametric right adjoint]] \item [[connected category]] \item [[wide pullback]] \item [[wide pushout]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Robert Paré]], \emph{Simply connected limits}. Can. J. Math., Vol. XLH, No. 4, 1990, pp. 731-746, \href{http://math.ca/10.4153/CJM-1990-038-6}{CMS} \end{itemize} [[!redirects connected limit]] [[!redirects connected limits]] \end{document}