\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connected object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_in_terms_of_coproducts}{Characterization in terms of coproducts}\dotfill \pageref*{characterization_in_terms_of_coproducts} \linebreak \noindent\hyperlink{general_properties}{General properties}\dotfill \pageref*{general_properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A connected object is a generalisation of the concept of [[connected space]] from [[Top]] to an arbitrary [[extensive category]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $C$ be an [[extensive category]], then: \begin{defn} \label{ConnectedObject}\hypertarget{ConnectedObject}{} An [[object]] $X$ of $C$ is \textbf{connected} if the [[representable functor]] \begin{displaymath} hom(X, -) \colon C \to Set \end{displaymath} [[preserved limit|preserves]] all [[coproducts]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} By definition, $hom(X,-)$ preserves binary coproducts if the canonically defined morphism $hom(X,Y) + hom(X,Z) \to hom(X,Y + Z)$ is always a [[bijection]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} By this definition, the [[initial object]] of $C$ is \emph{not} in general connected (except for degenerate cases of $C$); it is [[too simple to be simple]]. This matches the notion that the [[empty space]] should not be considered connected, discussed at [[connected space]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} If $C$ is a [[infinitary extensive category]] then for $X \in Ob(C)$ to be connected it is enough to require that $hom(X,-)$ preserves \emph{binary} coproducts. This is theorem \ref{RespectForBinaryCoproductsIsSufficient} below. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_in_terms_of_coproducts}{}\subsubsection*{{Characterization in terms of coproducts}}\label{characterization_in_terms_of_coproducts} Let $C$ be an infinitary [[extensive category]], then \begin{theorem} \label{RespectForBinaryCoproductsIsSufficient}\hypertarget{RespectForBinaryCoproductsIsSufficient}{} An [[object]] $X$ of $C$ is connected, def. \ref{ConnectedObject}, if and only if $\hom(X, -): C \to Set$ preserves binary coproducts. \end{theorem} \begin{proof} The ``only if'' is clear, so we just prove the ``if''. We first show that $\hom(X, -)$ preserves the [[initial object]] $0$. Indeed, if $\hom(X, -)$ preserves the binary product $X + 0 = X$, then the canonical map \begin{displaymath} \hom(X, X) + \hom(X, 0) \to \hom(X, X) \end{displaymath} is a bijection of sets, where the restriction to $\hom(X, X)$ is also a bijection of sets $id: \hom(X, X) \to \hom(X, X)$. This forces the set $\hom(X, 0)$ to be empty. Now let $\{Y_\alpha: \alpha \in A\}$ be a set of objects of $C$. We are required to show that each map \begin{displaymath} f\colon X \to \sum_\alpha Y_\alpha \end{displaymath} factors through a unique inclusion $i_\alpha: Y_\alpha \to \sum_\alpha Y_\alpha$. By infinite extensivity, each pullback $U_\alpha \coloneqq f^\ast (Y_\alpha)$ exists and the canonical map $\sum_\alpha U_\alpha \to X$ is an isomorphism. We will treat it as the identity. Now all we need is to prove the following. \begin{itemize}% \item Claim: $X = U_\alpha$ for exactly one $\alpha$. For the others, $U_\beta = 0$. \end{itemize} Indeed, for each $\alpha$, the identity map factors through one of the two summands in \begin{displaymath} id\colon X \to U_\alpha + \sum_{\beta \neq \alpha} U_\beta \end{displaymath} because $\hom(X, -)$ preserves binary coproducts. In others words, either $X = U_\alpha$ or $X = \sum_{\beta \neq \alpha} U_\beta$ (and the other is $0$). We cannot have $U_\alpha = 0$ for every $\alpha$, for then $X = \sum_\alpha U_\alpha$ would be $0$, contradicting the fact that $\hom(X, 0) = 0$. So $X = U_\alpha$ for at least one $\alpha$. And no more than one $\alpha$, since we have $U_\alpha \cap U_\beta = 0$ whenever $\alpha \neq \beta$. \end{proof} \begin{remark} \label{}\hypertarget{}{} This proof is not [[constructive mathematics|constructive]], as we have no way to construct a particular $\alpha$ such that $X = U_\alpha$. (It is constructive if [[Markov's principle]] applies to $A$.) \end{remark} From the proof above, we extract a result useful in its own right, giving an alternative definition of connected object. \begin{theorem} \label{Scholium}\hypertarget{Scholium}{} An object $X$ in an [[extensive category]] is connected, def. \ref{ConnectedObject}, if and only if in any [[coproduct]] decomposition $X \simeq U + V$, exactly one of $U$, $V$ is not the [[initial object]]. \end{theorem} \begin{proof} If $X$ is connected and $X = U + V$ is a coproduct decomposition, then the arrow $id \colon X \to U + V$, factors through one of the coproduct inclusions of $i_U, i_V \colon U, V \hookrightarrow U + V$. If it factors through say $U$, then the subobject $i_U$ is all of $X$, and $V$ is forced to be initial by disjointness of coproducts. Turning now to the if direction, suppose $f \colon X \to Y + Z$ is a map, and put $U = f^\ast(i_Y)$, $V = f^\ast(i_Z)$. By extensivity, we have a coproduct decomposition $X = U + V$. One of $U$, $V$ is initial, say $V$, and then we have $X = U$, meaning that $f$ factors through $Y$, and uniquely so since $i_Y$ is monic. Hence $f$ belongs to (exactly) one of the two subsets $\hom(X, Y) \hookrightarrow \hom(X, Y + Z)$, $\hom(X, Z) \hookrightarrow \hom(X, Y + Z)$. \end{proof} \hypertarget{general_properties}{}\subsubsection*{{General properties}}\label{general_properties} \begin{prop} \label{}\hypertarget{}{} A [[colimit]] of connected objects over a [[connected category|connected]] [[diagram]] is itself a connected object. \end{prop} \begin{proof} Because coproducts in $Set$ commute with \emph{limits} of connected diagrams. \end{proof} \begin{prop} \label{}\hypertarget{}{} If $X \in Ob(C)$ is connected and $X \to Y$ is an [[epimorphism]], then $Y$ is connected. \end{prop} \begin{proof} Certainly $Y$ is not [[initial object|initial]], because initial objects in extensive categories are [[strict initial object|strict]]. Suppose $Y = U + V$ (see theorem \ref{Scholium} above), so that we have an epimorphism $X \to U + V$. By connectedness of $X$, this epi factors through one of the summands, say $U$. But then the inclusion $i_U: U \hookrightarrow U + V$ is epic, in fact an epic equalizer of two maps $U + i_1, U + i_2: U + V \rightrightarrows U + V + V$. This means $i_U$ is an isomorphism; by disjointness of coproducts, this forces $V$ to be initial. Of course $U$ is not initial; otherwise $Y$ would be initial. \end{proof} \begin{remark} \label{}\hypertarget{}{} It need not be the case that products of connected objects are connected. For example, in the topos $\mathbb{Z}$-Set, the product $\mathbb{Z} \times \mathbb{Z}$ decomposes as a countable coproduct of copies of $\mathbb{Z}$. (For more on this topic, see also [[cohesive topos]].) \end{remark} We do have the following partial result, generalizing the case of $Top$. \begin{theorem} \label{prod}\hypertarget{prod}{} Suppose $C$ is a cocomplete $\infty$-[[extensive category]] with [[finite products]]. Assume that the [[terminal object]] is a [[separator]], and that [[Cartesian product]] functors $X \times (-) : C \to C$ preserve [[epimorphisms]]. Then a product of finitely many connected objects is itself connected. \end{theorem} \begin{proof} In the first place, $1$ is connected. For suppose $1 = U + V$ where $U$ is not initial. The two coproduct inclusions $U \to U + U$ are distinct by disjointness of sums. Since $1$ is a separator, there must be a map $1 \to U$ separating these inclusions. We then conclude $U \cong 1$, and then $V \cong 0$ by disjointness of sums. Now let $X$ and $Y$ be connected. The two inclusions $i_1, i_2: X \to X + X$ are distinct, so there exists a point $a \colon 1 \to X$ separating them. For each $y \colon 1 \to Y$, the +-shaped object $T_y = (X \times y) \cup (a \times Y)$ is connected (we define $T_y$ to be a sum of connected objects $X \times y$, $a \times Y$ amalgamated over the connected object $a \times y = 1 \times 1 = 1$, i.e., to be a connected colimit of connected objects). We have a map \begin{displaymath} \phi: \bigcup_{y \colon 1 \to Y} T_y \to X \times Y \end{displaymath} where the union is again a sum of connected objects $T_y$ amalgamated over $a \times Y$, so this union is connected. The map $\phi$ is epic, because the evident map \begin{displaymath} \sum_{y \colon 1 \to Y} X \times y \cong X \times \sum_{y \colon 1 \to Y} 1 \to X \times Y \end{displaymath} is epic (by the assumptions that $1$ is a [[separator]] and $X \times -$ preserves epis), and this map factors through $\phi$. It follows that the codomain $X \times Y$ of $\phi$ is also connected. \end{proof} \begin{remark} \label{prod2}\hypertarget{prod2}{} The same method of proof shows that for an arbitrary family of [[connected spaces]] $\{X_\alpha\}_{\alpha \in A}$, the connected component of a point $x = (x_\alpha)$ in the product space $X = \prod_{\alpha \in A} X_\alpha$ contains at least all those points which differ from $x$ in at most finitely many coordinates. However, the set of such points is dense in $\prod_{\alpha \in A} X_\alpha$, so $\prod_{\alpha \in A} X_\alpha$ must also be connected. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Connected objects in [[Top]] are precisely [[connected topological spaces]]. \item For a [[group]] $G$, connected objects in the category $G Set$ of [[permutation representation]]s are precisely the ([[inhabited set|inhabited]]) [[transitive action|transitive]] $G$-sets. \item Objects in a [[locally connected topos]] are [[coproducts]] of connected objects. (This includes categories such as $G Set$, [[permutation representations]] of a [[group]] $G$.) \item A [[scheme]] is connected as a scheme (which by definition means that its underlying topological space is connected) if and only if it is connected as an object of the category of schemes. See \href{http://gausyu.github.io/2016/02/13/Connectedness-of-Schemes/}{here}. \item [[connected graph]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[connected topos]], [[locally connected topos]] \item [[disjoint coproduct]] \item [[coproduct-preserving representable]] \item [[n-connected object in an (∞,1)-topos]] \end{itemize} [[!redirects connected object]] [[!redirects connected objects]] [[!redirects connected]] \end{document}