\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connecting homomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{for_long_cohomology_exact_sequences}{For long (co)homology exact sequences}\dotfill \pageref*{for_long_cohomology_exact_sequences} \linebreak \noindent\hyperlink{OnHomologyInTermsOfElements}{In terms of elements}\dotfill \pageref*{OnHomologyInTermsOfElements} \linebreak \noindent\hyperlink{OnHomologyGeneralAbstract}{General abstract}\dotfill \pageref*{OnHomologyGeneralAbstract} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_homotopy_fiber_sequences}{Relation to homotopy fiber sequences}\dotfill \pageref*{relation_to_homotopy_fiber_sequences} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generally, a \emph{connecting homomorphism} is a [[morphism]] of the kind produced by the [[snake lemma]]. Specifically, when the [[double complex]] that goes into the snake lemma is regarded as part of a [[short exact sequence]] $A_\bullet \to B_\bullet \to C_\bullet$ of [[chain complexes]], then the connecting homomorphisms induce morphisms $\delta_n : H_n(C) \to H_{n-1}(A)$ on the [[homology groups]] of these chain complexes which exhibit the corresponding [[long exact sequence in homology]] of the form \begin{displaymath} \cdots \to H_n(A) \to H_n(B) \to H_n(C) \stackrel{\delta_n}{\to} H_{n-1}(A) \to H_{n-1}(B) \to H_{n-1}(C) \to \cdots \,. \end{displaymath} This long exact sequence is the image under [[chain homology]] \begin{displaymath} H_0(-) : Ch_\bullet(\mathcal{A}) \to \mathcal{A} \end{displaymath} of the long [[homotopy fiber sequence]] of chain complexes induced by the short exact sequence. Hence the connecting homomorphism is the image under $H_\bullet(-)$ of a [[mapping cone]] inclusion on chain complexes. \hypertarget{for_long_cohomology_exact_sequences}{}\subsection*{{For long (co)homology exact sequences}}\label{for_long_cohomology_exact_sequences} In the case that $\mathcal{A} \simeq R$[[Mod]] for some [[ring]] $R$, the construction of the connecting homomorphism for [[homology long exact sequences]] is easily described in terms of elements and checking its properties is elementary, see \emph{\hyperlink{OnHomologyInTermsOfElements}{In terms of elements}} below. By the \href{abelian%20category#EmbeddingTheorems}{embedding theorems} the general case can be reduced to this case. But there is also a general abstract description without recourse to elements, which we discuss further below in \emph{\hyperlink{OnHomologyGeneralAbstract}{General abstract construction}} . \hypertarget{OnHomologyInTermsOfElements}{}\subsubsection*{{In terms of elements}}\label{OnHomologyInTermsOfElements} Let $R$ be a [[commutative ring]] and let $\mathcal{A} = R$[[Mod]]. Write $Ch_\bullet(\mathcal{A})$ for the [[category of chain complexes]] in $\mathcal{A}$. Let \begin{displaymath} 0 \to A_\bullet \stackrel{i}{\to} B_\bullet \stackrel{p}{\to} C_\bullet \to 0 \end{displaymath} be a [[short exact sequence]] in $Ch_\bullet(\mathcal{A})$. \begin{defn} \label{ConnectingForHomologyInComponents}\hypertarget{ConnectingForHomologyInComponents}{} For $n \in \mathbb{Z}$, define a [[group homomorphism]] \begin{displaymath} \delta_n : H_n(C) \to H_{n-1}(A) \,, \end{displaymath} called the \textbf{$n$th connecting homomorphism} of the short exact sequence, by sending \begin{displaymath} \delta_n : [c] \mapsto [\partial^B \hat c]_A \,, \end{displaymath} where \begin{enumerate}% \item $c \in Z_n(C)$ is a [[cycle]] representing a given [[homology group]]; \item $\hat c \in C_n(B)$ is any lift of that cycle to an element in $B_n$, which exists because $p$ is a [[surjection]] (but which no longer needs to be a cycle itself); \item $[\partial^B \hat c]_A$ is the $A$-homology class of $\partial^B \hat c$ which is indeed in $A_{n-1} \hookrightarrow B_{n-1}$ by exactness (since $p(\partial^B \hat c) = \partial^C p(\hat c) = \partial^C c = 0$) and indeed in $Z_{n-1}(A) \hookrightarrow A_{n-1}$ since $\partial^A \partial^B \hat c = \partial^B \partial^B \hat c = 0$. \end{enumerate} \end{defn} \begin{prop} \label{}\hypertarget{}{} Def. \ref{ConnectingForHomologyInComponents} is indeed well defined in that the given map is independent of the choice of lift $\hat c$ involved and in that the group structure is respected. \end{prop} \begin{proof} To see that the constructon is well-defined, let $\tilde c \in B_{n}$ be another lift. Then $p(\hat c - \tilde c) = 0$ and hence $\hat c - \tilde c \in A_n \hookrightarrow B_n$. This exhibits a homology-equivalence $[\partial^B\hat c]_A \simeq [\partial^B \tilde c]_A$ since $\partial^A(\hat c - \tilde c) = \partial^B \hat c - \partial^B \tilde c$. To see that $\delta_n$ is a group homomorphism, let $[c] = [c_1] + [c_2]$ be a sum. Then $\hat c \coloneqq \hat c_1 + \hat c_2$ is a lift and by linearity of $\partial$ we have $[\partial^B \hat c]_A = [\partial^B \hat c_1] + [\partial^B \hat c_2]$. \end{proof} \begin{prop} \label{}\hypertarget{}{} Under [[chain homology]] $H_\bullet(-)$ the morphisms in the short exact sequence together with the connecting homomorphisms yield the [[homology long exact sequence]] \begin{displaymath} \cdots \to H_n(A) \to H_n(B) \to H_n(C) \stackrel{\delta_n}{\to} H_{n-1}(A) \to H_{n-1}(B) \to H_{n-1}(C) \to \cdots \,. \end{displaymath} \end{prop} \begin{proof} Consider first the exactness of $H_n(A) \stackrel{H_n(i)}{\to} H_n(B) \stackrel{H_n(p)}{\to} H_n(C)$. It is clear that if $a \in Z_n(A) \hookrightarrow Z_n(B)$ then the image of $[a] \in H_n(B)$ is $[p(a)] = 0 \in H_n(C)$. Conversely, an element $[b] \in H_n(B)$ is in the kernel of $H_n(p)$ if there is $c \in C_{n+1}$ with $\partial^C c = p(b)$. Since $p$ is surjective let $\hat c \in B_{n+1}$ be any lift, then $[b] = [b - \partial^B \hat c]$ but $p(b - \partial^B c) = 0$ hence by exactness $b - \partial^B \hat c \in Z_n(A) \hookrightarrow Z_n(B)$ and so $[b]$ is in the image of $H_n(A) \to H_n(B)$. It remains to see that \begin{enumerate}% \item the [[image]] of $H_n(B) \to H_n(C)$ is the [[kernel]] of $\delta_n$; \item the [[kernel]] of $H_{n-1}(A) \to H_{n-1}(B)$ is the [[image]] of $\delta_n$. \end{enumerate} This follows by inspection of the formula in def. \ref{ConnectingForHomologyInComponents}. We spell out the first one: If $[c]$ is in the image of $H_n(B) \to H_n(C)$ we have a lift $\hat c$ with $\partial^B \hat c = 0$ and so $\delta_n[c] = [\partial^B \hat c]_A = 0$. Conversely, if for a given lift $\hat c$ we have that $[\partial^B \hat c]_A = 0$ this means there is $a \in A_n$ such that $\partial^A a \coloneqq \partial^B a = \partial^B \hat c$. But then $\tilde c \coloneqq \hat c - a$ is another possible lift of $c$ for which $\partial^B \tilde c = 0$ and so $[c]$ is in the image of $H_n(B) \to H_n(C)$. \end{proof} \begin{remark} \label{}\hypertarget{}{} Of course the situation for [[cochain cohomology]] is formally dual to this situation. For convenience we repeat the statement for dual chains: Let $A^\bullet \to B^\bullet \to C^\bullet$ be a short exact sequence of cochain complexes. For $[c]_C \in H^n(C)$ the class of a closed element $c$, by surjectivity of $B \to C$ there is an element $\hat c \in B$ mapping to it. This need not be closed anymore, but of course $d_B \hat c$ is. By the fact that $B \to C$ is a chain map we have that the image of $d_B \hat c$ in $C$ vanishes. Therefore by the exactness of the sequence the element $d_B \hat c$ may be regarded as a closed element of $A$. The cohomology class $[d_B \hat c]_A$ of this is what the connecting homomorphism \begin{displaymath} \delta^n : H^n(C) \to H^{n+1}(A) \end{displaymath} assigns to $[c]_C$: \begin{displaymath} \delta : [c]_C \mapsto [d_B\hat c]_A \,. \end{displaymath} This is indeed well defined, in that it is independent of the choice of $\hat c$: for $\hat c'$ another choice, we have that the difference $\hat c - \hat c'$ is in the kernel of $B \to C$ hence is in $A$. Then $d_B \hat c' = d_B \hat c + d_A(\hat c - \hat c')$. Hence $[d_B \hat c]_A = [d_B \hat c']_A$. \end{remark} \hypertarget{OnHomologyGeneralAbstract}{}\subsubsection*{{General abstract}}\label{OnHomologyGeneralAbstract} \begin{theorem} \label{}\hypertarget{}{} Let $0 \to A_\bullet \stackrel{f}{\to} B_\bullet \stackrel{g}{\to} C_\bullet \to 0$ be a [[short exact sequence]] of [[chain complexes]] in some [[abelian category]] $\mathcal{A}$. Then for all $n \in \mathbb{Z}$ there are natural \emph{connecting homomorphisms} $\partial : H_n(C) \to H_{n-1}(A)$ such that we have a [[long exact sequence]] of the form \begin{displaymath} \cdots \stackrel{g}{\to} H_{n+1}(C) \stackrel{\partial}{\to} H_n(A) \stackrel{f}{\to} H_n(B) \stackrel{g}{\to} H_n(C) \stackrel{\partial}{\to} H_{n-1}(A) \stackrel{f}{\to} \cdots \end{displaymath} in [[chain homology]]. \end{theorem} \begin{proof} Applying the [[snake lemma]] to the [[commuting diagram]] \begin{displaymath} \itexarray{ && 0 && 0 && 0 \\ && \downarrow && \downarrow && \downarrow \\ 0 &\to& Z_n A &\to& Z_n B &\to & Z_n C \\ && \downarrow && \downarrow && \downarrow \\ 0 &\to& A_n &\to& B_n &\to & C_n &\to & 0 \\ && \downarrow^{\mathrlap{d}} && \downarrow^{\mathrlap{d}} && \downarrow^{\mathrlap{d}} \\ 0 &\to& A_{n-1} &\to& B_{n-1} &\to & C_{n-1} &\to& 0 \\ && \downarrow && \downarrow && \downarrow \\ 0 &\to& \frac{A_{n-1}}{im(d)(A_n)} &\to& \frac{B_{n-1}}{im(d)(B_n)} &\to & \frac{C_{n-1}}{im(d)(C_n)} &\to & 0 \\ && \downarrow && \downarrow && \downarrow \\ && 0 && 0 && 0 } \end{displaymath} shows that the rows in the commuting diagram \begin{displaymath} \itexarray{ && \frac{A_{n}}{im(d)(A_{n+1})} &\to& \frac{B_{n}}{im(d)(B_{n+1})} &\to & \frac{C_{n}}{im(d)(C_{n+1})} &\to & 0 \\ && \downarrow^{\mathrlap{d}} && \downarrow^{\mathrlap{d}} && \downarrow^{\mathrlap{d}} \\ 0 &\to& Z_{n-1} A &\stackrel{f}{\to}& Z_{n-1} B &\stackrel{g}{\to}& Z_{n-1} C } \end{displaymath} are [[exact sequences]]. Therefore applying the [[snake lemma]] to this, once more, yields the desired long exact sequence. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} The [[nLab:connecting homomorphism]] of the [[nLab:long exact sequence in homology]] induced from short exact sequences of the form \begin{displaymath} A/A_{n tor} \stackrel{(-)\cdot n}{\to} A \to A/(n A) \end{displaymath} is called a \emph{[[nLab:Bockstein homomorphism]]}. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_homotopy_fiber_sequences}{}\subsubsection*{{Relation to homotopy fiber sequences}}\label{relation_to_homotopy_fiber_sequences} The connecting homomorphism in a [[long exact sequence in homology]] induced from a short exact sequence $A_\bullet \stackrel{f}{\to} B_\bullet \to C_\bullet$ is equivalently the image under the [[homology group]] functor of the [[homotopy cofiber sequence]] induced by $f$. This is discussed in detail at \emph{[[mapping cone]]} in the section \emph{\href{mapping+cone#HomologyExactSequencesAndFiberSequences}{homology exact sequences}}. \hypertarget{references}{}\subsection*{{References}}\label{references} For instance section 1.3 of \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]} \end{itemize} [[!redirects connecting homomorphisms]] \end{document}