\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connection on a 2-bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{on_trivial_2bundles}{On trivial 2-bundles}\dotfill \pageref*{on_trivial_2bundles} \linebreak \noindent\hyperlink{differential_ech_cocycle_data}{Differential ech cocycle data}\dotfill \pageref*{differential_ech_cocycle_data} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{applications_to_physics}{Applications to physics}\dotfill \pageref*{applications_to_physics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{connection on a 2-bundle} generalizes the notion of [[connection on a bundle]] from [[principal bundle]]s to [[principal 2-bundle]]s / [[gerbe]]s. It comes with a notion of [[higher parallel transport|2-dimensional parallel transport]]. For an exposition of the concepts here see also at \emph{[[infinity-Chern-Weil theory introduction]]} the section \emph{\href{http://ncatlab.org/nlab/show/infinity-Chern-Weil%20theory%20introduction#ConnectionOn2Bundle}{Connections on principal 2-bundles}} . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $G$ a [[Lie 2-group]], a \emph{connection} on a $G$-[[principal 2-bundle]] coming from a [[cocycle]] $g : X \to \mathbf{B}G$ is a lift of the cocycle to the [[2-groupoid of Lie 2-algebra valued forms]] $\mathbf{B}G_{conn}$ \begin{displaymath} \itexarray{ && \mathbf{B}G_{conn} \\ & {}^{\mathllap{\nabla}}\nearrow & \downarrow \\ X &\stackrel{g}{\to}& \mathbf{B}G } \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{on_trivial_2bundles}{}\subsubsection*{{On trivial 2-bundles}}\label{on_trivial_2bundles} When the underlying [[principal 2-bundle]] over a [[smooth manifold]] $X$ is topologically trivial, then the connections on it are identified with [[Lie 2-algebra valued differential forms]] on $X$. Recall from the discussion there what such form data looks like. Let $\mathfrak{g}$ be some [[Lie 2-algebra]]. For instance for discussion of connections on $G$-[[gerbe]]s ($G$ a [[Lie group]]) this would be the [[automorphism 2-group|derivation Lie 2-algebra]] of the [[Lie algebra]] of $G$. Let $\mathfrak{g}_0$ and $\mathfrak{g}_1$ be the two vector spaces involved and let \begin{displaymath} \{t^a\} \,, \;\;\; \{b^i\} \end{displaymath} be a dual basis, respectively. The structure of a Lie 2-algebra is conveniently determined by writing out the most general [[Chevalley-Eilenberg algebra]] \begin{displaymath} CE(\mathfrak{g}) \in cdgAlg_\mathbb{R} \end{displaymath} with these generators. We thus have \begin{displaymath} d_{CE(\mathfrak{g})} t^a = - \frac{1}{2}C^a{}_{b c} t^b \wedge t^c - r^a{}_i b^i \end{displaymath} \begin{displaymath} d_{CE(\mathfrak{g})} b^i = -\alpha^i_{a j} t^a \wedge b^j - r^i{}_{a b c} t^a \wedge t^b \wedge t^c \,, \end{displaymath} for collections of structure constants $\{C^a{}_{b c}\}$ (the bracket on $\mathfrak{g}_0$) and $\{r^i_a\}$ (the differential $\mathfrak{g}_1 \to \mathfrak{g}_0$) and $\{\alpha^i{}_{a j}\}$ (the [[action]] of $\mathfrak{g}_0$ on $\mathfrak{g}_1$) and $\{r_{a b c}\}$ (the ``Jacobiator'' for the bracket on $\mathfrak{g}_0$). These constants are subject to constraints (the weak [[Jacobi identity]] and its higher [[coherence law]]s) which are precisely equivalent to the condition \begin{displaymath} (d_{CE(\mathfrak{g})})^2 = 0 \,. \end{displaymath} Over a test space $U$ a $\mathfrak{g}$-valued form datum is a morphism \begin{displaymath} \Omega^\bullet(U) \leftarrow W(\mathfrak{g}) : (A,B) \end{displaymath} from the [[Weil algebra]] $W(\mathfrak{g})$. This is given by a 1-form \begin{displaymath} A \in \Omega^1(U, \mathfrak{g}_0) \end{displaymath} and a 2-form \begin{displaymath} B \in \Omega^2(U, \mathfrak{g}_1) \,. \end{displaymath} The [[curvature]] of this is $(\beta, H)$, where the 2-form component (``fake curvature'') is \begin{displaymath} \beta^a = d_{dR} A^a + \frac{1}{2}C^a{}_{b c} A^b \wedge A^c + r^{a}_{i} B^i \end{displaymath} and whose 3-form component is \begin{displaymath} H^i = d_{dR} B^i + \alpha^i{}_{a j} A^a \wedge B^j + r^i{}_{a b c} A^a \wedge A^b \wedge A^c \,. \end{displaymath} \hypertarget{differential_ech_cocycle_data}{}\subsubsection*{{Differential ech cocycle data}}\label{differential_ech_cocycle_data} We spell out the data of a connection on a 2-bundle over a [[smooth manifold]] $X$ with respect to a given [[open cover]] $\{U_i \to X\}$, following (\hyperlink{FSS}{FSS}, \hyperlink{SchreiberCohesive}{SchreiberCohesive}) (\ldots{}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A [[differential string structure]] (untwisted) is a 2-connection with coefficients in the [[string 2-group]] / [[string Lie 2-algebra]]. \item The [[worldvolume]] theory of the [[fivebrane]] is expected to be a [[6d (2,0)-supersymmetric QFT]] containing a [[self-dual higher gauge theory]] whose fields are 2-connections (see \emph{\href{http://ncatlab.org/nlab/show/NS5-brane#SelfDual2Connections}{Self-dual 2-connections}} there). \item A connection on a [[twisted vector bundle]] is naturally a 2-connection. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[connection on a bundle]] \item \textbf{connection on a 2-bundle} / [[connection on a gerbe]] / [[connection on a bundle gerbe]] \begin{itemize}% \item [[2-groupoid of Lie 2-algebra valued forms]] \end{itemize} \item [[connection on a 3-bundle]] / [[connection on a bundle 2-gerbe]] \item [[connection on an ∞-bundle]] \item [[parallel transport]], [[higher parallel transport]] \item [[holonomy]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Connections on 2-bundles with vanishing 2-form curvature and arbitrary 3-form curvature are defined in terms of their [[higher parallel transport]] are discussed in \begin{itemize}% \item [[Urs Schreiber]], [[Konrad Waldorf]], \emph{Smooth Functors and Differential Forms}, Homology, Homotopy Appl., 13(1), 143-203 (2011) (\href{http://arxiv.org/abs/0802.0663}{arXiv:0802.0663}) \emph{Connections on non-abelian gerbes and their holonomy}, Theory and Applications of Categories, Vol. 28, 2013, No. 17, pp 476-540. (\href{http://www.tac.mta.ca/tac/volumes/28/17/28-17abs.html}{TAC}, \href{http://arxiv.org/abs/0808.1923}{arXiv:0808.1923}, ) \end{itemize} expanding on \begin{itemize}% \item [[John Baez]], [[Urs Schreiber]], \emph{Higher gauge theory} (\href{http://arxiv.org/abs/math/0511710}{arXiv:math/0511710}) (\href{http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos+--+references/#BaezSchreiber}{web}) \end{itemize} Much further discussion and illustration and relation to [[tensor networks]] is in \begin{itemize}% \item [[Arthur Parzygnat]], \emph{Two-dimensional algebra in lattice gauge theory} (\href{https://arxiv.org/abs/1802.01139}{arXiv:1802.01139}) \end{itemize} Examples of 2-connections with vanishing 2-form curvature obtained from [[geometric quantization]] are discusssed in \begin{itemize}% \item Olivier Brahic, \emph{On the infinitesimal Gauge Symmetries of closed forms} (\href{http://arxiv.org/abs/1010.2189}{arXiv}) \end{itemize} The [[cocycle]] data for 2-connections with coeffcients in [[automorphism 2-group]]s but without restrictions on the 2-form curvature have been proposed in \begin{itemize}% \item [[Lawrence Breen]], [[William Messing]], \emph{Differential Geometry of Gerbes} Advances in Mathematics, Volume 198, Issue 2, 20 (2005) (\href{http://arxiv.org/abs/math/0106083}{arXiv:math/0106083}) \item [[Lawrence Breen]], \emph{Differential Geometry of Gerbes and Differential Forms} (\href{http://arxiv.org/abs/0802.1833}{arXiv:0802.1833}) \end{itemize} and \begin{itemize}% \item Paolo Aschieri, Luigi Cantini, [[Branislav Jurco]], \emph{Nonabelian Bundle Gerbes, their Differential Geometry and Gauge Theory} , Communications in Mathematical Physics Volume 254, Number 2 (2005) 367-400,(\href{http://arxiv.org/abs/hep-th/0312154}{arXiv:hep-th/0312154}). \end{itemize} A discussion of fully general local 2-connections is in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{$L_\infty$-connections} (\href{http://arxiv.org/abs/0801.3480}{arXiv:0801.3480}) \end{itemize} and the globalization is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]} \end{itemize} For a discussion of all this in a more comprehensive context see section xy of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} See also [[connection on an infinity-bundle]] for the general theory. \hypertarget{applications_to_physics}{}\subsubsection*{{Applications to physics}}\label{applications_to_physics} Nonabelian 2-connections appear for instance as [[orientifold]] [[B-fields]] in [[type II string theory]], as [[differential string structure]] in [[heterotic string theory]], and as fields in non-abelian [[7-dimensional Chern-Simons theory]]. See at these pages for references. An appearance in 4-dimensional [[Yang-Mills theory]] and [[4d TQFT]] is reported in \begin{itemize}% \item [[Sergei Gukov]], [[Anton Kapustin]], \emph{[[Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories]]} (\href{http://arxiv.org/abs/1307.4793}{arXiv:1307.4793}) \end{itemize} [[!redirects connections on a 2-bundle]] [[!redirects connections on 2-bundles]] [[!redirects 2-connection]] [[!redirects 2-connections]] [[!redirects principal 2-connection]] [[!redirects principal 2-connections]] [[!redirects connection on a principal 2-bundle]] \end{document}