\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connection on a bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{more_concrete_picture}{More concrete picture}\dotfill \pageref*{more_concrete_picture} \linebreak \noindent\hyperlink{more_abstract_picture}{More abstract picture}\dotfill \pageref*{more_abstract_picture} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{ExistenceOfConnections}{Existence of connections}\dotfill \pageref*{ExistenceOfConnections} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{connections_on_the_tangent_bundle}{Connections on the tangent bundle}\dotfill \pageref*{connections_on_the_tangent_bundle} \linebreak \noindent\hyperlink{connections_in_physics}{Connections in physics}\dotfill \pageref*{connections_in_physics} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{superconnections}{Superconnections}\dotfill \pageref*{superconnections} \linebreak \noindent\hyperlink{simonssullivan_structured_bundles}{Simons-Sullivan structured bundles}\dotfill \pageref*{simonssullivan_structured_bundles} \linebreak \noindent\hyperlink{connections_on_a_principal_bundle}{Connections on a principal $\infty$-bundle}\dotfill \pageref*{connections_on_a_principal_bundle} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{connection} on a [[bundle]] $P \to X$ -- a [[principal bundle]] or an [[associated bundle]] like a [[vector bundle]] -- is a rule that identifies [[fiber]]s of the bundle along paths in the base space $X$. There are several different but equivalent formalizations of this idea: \begin{itemize}% \item as a \textbf{[[parallel transport]]} functor, \item as a rule for a \textbf{[[covariant derivative]]}, \item as a \textbf{distribution (field) of horizontal subspaces} -- an [[Ehresmann connection]] -- and via a \textbf{connection $1$-form} which annihilates the distribution of horizontal subspaces. The connection in that sense induces a smooth version of [[Hurewicz connection]]. \end{itemize} The usual textbook convention is to say just connection for the distribution of horizontal subspaces, and the objects of the other three approaches one calls more specifically covariant derivative, connection $1$-form and [[parallel transport]]. In the remainder of this Idea-section we discuss a bit more how to understand connections in terms of parallel transport. Given a smooth [[bundle]] $P \to X$, for instance a $G$-[[principal bundle]] or a [[vector bundle]], a \emph{connection} on $P$ is a prescription to associate with each path \begin{displaymath} \gamma : x \to y \end{displaymath} in $X$ (which is a [[morphism]] in the [[path groupoid]] $\mathbf{P}_1(X)$) a morphism $tra(\gamma)$ between the fibers of $P$ over these points \begin{displaymath} \itexarray{ P_x &\stackrel{tra(\gamma)}{\to}& P_y \\ x &\stackrel{\gamma}{\to}& y } \end{displaymath} such that \begin{itemize}% \item this assignment respects the structure on the fibers $P_x$ (for instance is $G$-equivariant in the case that $P$ is a $G$-bundle or that is linear in the case that $P$ is a vector bundle); \item this assignment is smooth in a suitable sense; \item this assignment is [[functor]]ial in that for all pairs $x \stackrel{\gamma}{\to} y$, $y \stackrel{\gamma'}{\to} z$ of composable paths in $X$ we have \begin{displaymath} \itexarray{ P_x &\stackrel{tra(\gamma)}{\to}& P_y &\stackrel{tra(\gamma')}{\to}& P_z \\ x &\stackrel{\gamma}{\to}& y &\stackrel{\gamma'}{\to}& z } \;\;\; = \;\;\; \itexarray{ P_x &\stackrel{tra(\gamma' \circ \gamma)}{\to}& P_z \\ x &\stackrel{\gamma'\circ \gamma}{\to}& z } \end{displaymath} \end{itemize} In other words, a connection on $P$ is a [[functor]] \begin{displaymath} tra : \mathbf{P}_1(X) \to At''(P) \end{displaymath} from the [[path groupoid]] of $X$ to the [[Atiyah Lie groupoid]] of $P$ that is smooth in a suitable sense and \emph{splits the Atiyah sequence} in that $\mathbf{P}_1(X) \stackrel{tra}{\to} At''(X) \to \mathbf{P}_1(X)$ (see the notation at [[Atiyah Lie groupoid]]). \textbf{Terminology} The functor $tra$ is called the \textbf{[[parallel transport]]} of the connection. This terminology comes from looking at the orbits of all points in $P$ under $tra$ (i.e. from looking at the [[category of elements]] of $tra$): these trace out paths in $P$ sitting over paths in $X$ and one thinks of the image of a point $p \in P_x$ under $tra(\gamma)$ as the result of propagating $p$ parallel to these curves in $P$. \textbf{Flat connections} It may happen that the assignment $tra : \gamma \mapsto tra(\gamma)$ only depends on the [[homotopy]] class of the path $\gamma$ relative to its endpoints $x, y$. In other words: that $tra$ factors through the functor $P_1(X) \to \Pi_1(X)$ from the [[path groupoid]] to the [[fundamental groupoid]] of $X$. In that case the connection is called a \textbf{[[flat connection]]}. \hypertarget{more_concrete_picture}{}\subsubsection*{{More concrete picture}}\label{more_concrete_picture} By [[Lie theory|Lie differentiation]] the functor $tra$, i.e. by looking at what it does to very short pieces of paths, one obtains from it a splitting of the [[Atiyah Lie groupoid|Atiyah Lie algebroid sequence]], which is a morphism \begin{displaymath} \nabla : T X \to at(P) \end{displaymath} of vector bundles. Locally on $X$ -- meaning: when everything is pulled back to a [[cover]] $Y \to X$ of $X$ -- this is a $Lie(G)$-valued 1-form $A \in \Omega^1(Y, Lie(G))$ with certain special properties. In particular, since every $G$-[[principal bundle]] canonically trivializes when pulled back to its own total space $P$, a connection in this case gives rise to a 1-form $A \in \Omega^1(P)$ satisfying two conditions. This data is called an \textbf{[[Ehresmann connection]]}. If instead $P = E$ is a vector bundle, then the two conditions satisfies by $A$ imply that it defines a linear map \begin{displaymath} \nabla : \Gamma(E) \to \Omega^1(X) \otimes \Gamma(E) \end{displaymath} from the space $\Gamma(E)$ of section of $E$ that satisfies the properties of a \textbf{covariant derivative}. If again the connection is flat, then this is manifestly the datum of a [[Lie infinity-algebroid representation]] of the [[Lie algebroid|tangent Lie algebroid]] $T X$ of $X$ on $E$: it defines the action [[Lie algebroid]] which is the [[Lie theory|Lie version]] of the [[Lie groupoid]] classified by the parallel transport functor. \ldots{} \hypertarget{more_abstract_picture}{}\subsubsection*{{More abstract picture}}\label{more_abstract_picture} Recall from the discussion at $G$-[[principal bundle]] that the $G$-bundle $P \to X$ is encoded in a a suitable morphism \begin{displaymath} X \to \mathbf{B}G \end{displaymath} (namely a morphism in the right [[(infinity,1)-category]] which may be represented by an [[anafunctor]]). It turns out that similarly suitable morphisms \begin{displaymath} \mathbf{P}_1(X) \to \mathbf{B}G \end{displaymath} encode in one step the $G$-bundle together with its [[parallel transport]] functor. This is described in great detail in the reference by Schreiber--Waldorf below. (\ldots{}am running out of time\ldots{} ) \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Let $G$ be a [[Lie group]]. We recall briefly the following discussion of $G$-[[principal bundle]]s. For an in-depth discussion see [[Smooth∞Grpd]]. Write \begin{displaymath} \mathbf{B}G : U \mapsto ( Hom_{Diff}(U,G) \stackrel{\to}{\to} *) \end{displaymath} for the [[functor]] that sends a [[Cartesian space]] $U$ to the [[delooping]] [[groupoid]] of the group of $G$-valued [[smooth function]]s on $U$: the groupoid with a single object and the [[group]] $Hom_{Diff}(U,G)$ of maps as its set of morphisms. This is a groupoid-valued [[sheaf]] on the [[site]] [[CartSp]]${}_{smooth}$ and in fact is a [[(2,1)-sheaf]]/[[stack]]. For $X$ a [[paracompact space|paracompact]] [[smooth manifold]], we may also regard it as a [[(2,1)-sheaf]] on [[CartSp]] in an evident way. \begin{prop} \label{}\hypertarget{}{} The groupoid $G Bund(X)$ of $G$-[[principal bundle]]s on $X$ is equivalent to the hom-groupoid \begin{displaymath} \mathbf{H}(X,\mathbf{B}G) \simeq G Bund(X) \end{displaymath} taken in the [[(2,1)-topos]] of [[(2,1)-sheaves]] on [[CartSp]]${}_{smooth}$. \end{prop} A detailed discussion of this is at [[Smooth∞Grpd]] in the section . Now write $\mathfrak{g}$ for the [[Lie algebra]] of $\mathfrak{g}$. Then consider the functor \begin{displaymath} \mathbf{B} G_{conn} : U \mapsto [\mathbf{P}_1(U),\mathbf{B}G] = \left\{ A \stackrel{g}{\to} (g^{-1} A g + g^{-1} d g) | A \in \Omega^1(U,\mathfrak{g})\,, g \in C^\infty(U,G) \right\} \end{displaymath} that sends a [[Cartesian space]] $U$ to the \textbf{[[groupoid of Lie-algebra valued 1-forms]]} over $U$. There is an evident morphism of [[(2,1)-sheaves]] \begin{displaymath} \mathbf{B}G_{conn} \to \mathbf{B}G \end{displaymath} that forgets the 1-forms on each object $U$. \begin{defn} \label{}\hypertarget{}{} \textbf{(connection)} A \textbf{connection} on a smooth $G$-[[principal bundle]] $g : X \to \mathbf{B}G$ is a lift $\nabla$ to $\mathbf{B}G_{conn}$ \begin{displaymath} \itexarray{ && \mathbf{B}G_{conn} \\ & {}^{\mathllap{\nabla}}\nearrow & \downarrow \\ X &\stackrel{g}{\to}& \mathbf{B}G } \,. \end{displaymath} The \textbf{groupoid of $G$-principal bundles with connection} on $X$ is \begin{displaymath} G Bund_\nabla(X) := Hom(X,\mathbf{B}G_{conn}) \,. \end{displaymath} \end{defn} Explicitly, a morphism $g : X \to \mathbf{B}G$ is a nonabelian [[Cech cohomology]] [[cocycle]] on $X$ with values in $G$: \begin{enumerate}% \item a choice of [[good open cover]] $\{U_i \to X\}$ of $X$; \item a collection of [[smooth function]]s $(g_{i j} \in C^\infty(U_i \cap U_j), G)$ \end{enumerate} such that on $U_i \cap U_j \cap U_k$ the equation \begin{itemize}% \item $g_{i j} g_{j k} = g_{i k}$ \end{itemize} holds. A lift $\nabla : X \to \mathbf{B}G_{conn}$ of this is in addition \begin{enumerate}% \item a choice of [[Lie-algebra valued 1-form]]s $(A_i \in \Omega^1(U_i, \mathfrak{g}))$ \end{enumerate} such that on $U_i \cap U_j$ the equation \begin{itemize}% \item $A_j = g^{-1} A_i g + g^{-1} d g$ \end{itemize} holds, where on the right we have the pullback $g^* \theta$ of the [[Maurer-Cartan form]] on $G$ (see there). \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{ExistenceOfConnections}{}\subsubsection*{{Existence of connections}}\label{ExistenceOfConnections} \begin{defn} \label{}\hypertarget{}{} \textbf{(existence of connections)} Every $G$-principal bundle admits a connection. In other words, the forgetful functor \begin{displaymath} Hom(X, \bar \mathbf{B}G_{conn}) \to Hom(X,\mathbf{B}G) \end{displaymath} is an [[essentially surjective functor]]. \end{defn} \begin{proof} Choose a [[partition of unity]] $(\rho_i \in C^\infty(X,\mathbb{R}))$ subordinate to the [[good open cover]] $\{U_i \to X\}$ with respect to which a given cocycle $g : X \to \mathbf{B}G$ is expressed: \begin{itemize}% \item $(x \;not\; in\; U_i) \Rightarrow \rho_i(x) = 0$; \item $\sum_i \rho_i = 1$. \end{itemize} Then set \begin{displaymath} A_i := \sum_{i_0} \rho_{i_0}|_{U_{i_0}} (g_{i_0 i}|^{-1}_{U_{i_0}}) d_{dR} (g_{i_0 i}|_{U_{i_0}}) \,. \end{displaymath} By slight abuse of notation we shall write this and similar expressions simply as \begin{displaymath} A_i := \sum_{i_0} \rho_{i_0}(g_{i_0 i}^{-1} d_{dR} g_{i_0 i}) \,. \end{displaymath} Using the that $(g_{i j})$ satisfies its cocycle condition, one checks that this satisfies the cocycle condition for the 1-forms: \begin{displaymath} \begin{aligned} A_j - g_{i j}^{-1} A_i g_{i j} &= \sum_{i_0} \rho_{i_0} ( g_{i_0 j}^{-1} d g_{i_0 j} - ( g_{i_0 i} g_{i j}) ^{-1} (d g_{i_0 i}) g_{i j} ) \\ & = \sum_{i_0} \rho_{i_0} ( g_{i j}^{-1} d g_{i j} ) \\ & = g_{i j}^{-1} d g_{i j} \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \hypertarget{connections_on_the_tangent_bundle}{}\subsubsection*{{Connections on the tangent bundle}}\label{connections_on_the_tangent_bundle} Connections on [[tangent bundle]]s are also called [[affine connection]]s, or [[Levi-Civita connection]]s. They play a central role for instance on [[Riemannian manifold]]s and [[pseudo-Riemannian metric|pseudo-Riemannian manifold]]s. From the end of the 19th century and the beginning of the 20th centure originates a language to talk about these in terms of [[Christoffel symbol]]s. \hypertarget{connections_in_physics}{}\subsubsection*{{Connections in physics}}\label{connections_in_physics} In [[physics]] connections on bundles model [[gauge field]]s. \begin{itemize}% \item The [[electromagnetic field]] is a connection on a [[circle group]]-principal bundle; \item A [[Yang-Mills field]] more generally is a connection on a [[unitary group]]-principal bundle. \item The field of [[gravity]] is encoded in a connection on the [[orthogonal group]]-principal bundle to which the [[tangent bundle]] is [[associated bundle|associated]]. \end{itemize} For more on this see [[higher category theory and physics]]. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{superconnections}{}\subsubsection*{{Superconnections}}\label{superconnections} Generalizing the parallel transport definition from ordinary manifolds to [[supermanifold]]s yields the notion of [[superconnection]]. \hypertarget{simonssullivan_structured_bundles}{}\subsubsection*{{Simons-Sullivan structured bundles}}\label{simonssullivan_structured_bundles} When the notion of connection on a principal bundle is slightly coarsened, i.e. when more connections are regarded as being ismorphic than usual, one arrives at a structure called a [[Simons-Sullivan structured bundle]]. This has the special property that for $G = U$ the [[unitary group]], the corresponding [[Grothendieck group]] of such bundles is a model for [[differential K-theory]]. \hypertarget{connections_on_a_principal_bundle}{}\subsubsection*{{Connections on a principal $\infty$-bundle}}\label{connections_on_a_principal_bundle} See [[connection on a principal ∞-bundle]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{connection on a bundle}, [[universal connection]] \begin{itemize}% \item [[principal connection]] \begin{itemize}% \item [[affine connection]], [[Levi-Civita connection]] [[Cartan connection]] \item [[Chen connection]] \item [[covariant derivative]] \item [[equivariant connection]] \item [[logarithmic connection]] \end{itemize} \item [[Chern connection]] \item [[moduli space of connections]] \item [[fiber bundles in physics]] \end{itemize} \item [[connection on a 2-bundle]] / [[connection on a gerbe]] / [[connection on a bundle gerbe]] \item [[connection on a 3-bundle]] / [[connection on a bundle 2-gerbe]] \item [[connection on an ∞-bundle]] \item [[parallel transport]], [[higher parallel transport]] \item [[holonomy]], [[higher holonomy]] \begin{itemize}% \item [[holonomy group]] \item [[special holonomy]] \item [[nonabelian Stokes theorem]] \end{itemize} \item [[fiber bundles in physics]] \end{itemize} [[!include higher Atiyah groupoid - table]] [[!include gauge field - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} A classical textbook reference is \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \end{itemize} The formulation of connections in terms of their smooth [[parallel transport]] [[functors]] is in \begin{itemize}% \item [[Urs Schreiber]], [[Konrad Waldorf]], \emph{Parallel Transport and Functors}, J. Homotopy Relat. Struct. 4, 187-244 (2009) (\href{http://arxiv.org/abs/0705.0452}{arXiv:0705.0452}) \end{itemize} based on a series of classical observations. I farily comprehensive commented list of related references is here: \begin{itemize}% \item \emph{} \end{itemize} Basic facts about connections, such as the existence proof in terms of Cech cocycles, are collected in the brief lecture note \begin{itemize}% \item [[Theodore Voronov]], \emph{Differential Geometry, \S{}3 Connection on a vector bundle} (\href{http://www.maths.manchester.ac.uk/~tv/Teaching/Differential%20Geometry/2008-2009/lecture3.pdf}{pdf}) \end{itemize} Discussion of connection form (mostly on trivial bundles) in [[synthetic differential geometry]] includes the following \begin{itemize}% \item [[Anders Kock]], \emph{Connections and path connections in groupoids}, 2006 (\href{http://math.au.dk/publs?publid=619}{web}) \item [[Anders Kock]], \emph{Group valued differential forms revisited}, Feb 2007 (\href{http://math.au.dk/publs?publid=636}{web}) \end{itemize} [[!redirects connections on a bundle]] [[!redirects connections on bundles]] [[!redirects bundle with connection]] [[!redirects bundle with connections]] [[!redirects bundles with connection]] [[!redirects bundles with connections]] \end{document}