\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connection on a bundle gerbe} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \begin{itemize}% \item [[connection on a bundle]] \item [[connection on a 2-bundle]] / [[connection on a gerbe]] / \textbf{connection on a bundle gerbe} \item [[connection on a 3-bundle]] / [[connection on a bundle 2-gerbe]] \item [[connection on an ∞-bundle]] \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{for_line_bundle_gerbes}{for line bundle gerbes}\dotfill \pageref*{for_line_bundle_gerbes} \linebreak \noindent\hyperlink{for_principal_bundle_gerbes}{for principal bundle gerbes}\dotfill \pageref*{for_principal_bundle_gerbes} \linebreak \noindent\hyperlink{surface_transport}{Surface transport}\dotfill \pageref*{surface_transport} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{connection on a [[bundle gerbe]]} is a slight variant of a [[Cech cohomology|Cech]]-realization of a degree 3 [[Deligne cohomology]] cocycle. \begin{quote}% old content, needs to be polished \end{quote} Like a [[connection on a bundle|connection]] on a locally trivialized bundle is encoded in a Lie algebra-valued connection $1$-form on $Y$, the connection on a bundle gerbe gives rise to a Lie-algebra valued $2$-form on $Y$ (this shift in degree is directly related to the step from second to third integral cohomology). This $2$-form is sometimes addressed as the \emph{curving $2$-form} of a bundle gerbe. But there is more data necessary to describe a connection on a bundle gerbe. The details of the definition -- which is evident for line bundle gerbes but more involved for principal bundle gerbes -- can be naturally derived from a functorial concept of parallel surface transport, just like connection $1$-forms on bundles can be derived from parallel line transport. \hypertarget{definitions}{}\subsubsection*{{Definitions}}\label{definitions} \hypertarget{for_line_bundle_gerbes}{}\paragraph*{{for line bundle gerbes}}\label{for_line_bundle_gerbes} A connection (also known as ``connection and curving'') on a line bundle gerbe \begin{displaymath} B \stackrel{p}{\to} Y^{[2]} \stackrel{\to}{\to} Y \stackrel{\pi}{\to} X \end{displaymath} is \begin{itemize}% \item a 2-form on $Y$ \begin{displaymath} B \in \Omega^2(Y) \end{displaymath} \item a connection $\nabla$ on the line bundle $B \to Y^{[2]}$ \item such that \begin{displaymath} \pi_1^*B \; -\; p_2^*B \;=\; F_\nabla \end{displaymath} \item together with an extension of the bundle gerbe product $\mu$ to an isomorphism \begin{displaymath} \mu_\nabla \;:\; p_{12}^* (B,\nabla) \;\; \otimes p_{23}^* (B,\nabla) \;\to\; p_{13}^* (B,\nabla) \end{displaymath} of line bundles with connection. \end{itemize} Notice that this condition ensures that $d B$ is a $3$-form on $Y$ which agrees on double intersections \begin{displaymath} p_1^* d B \;\; = \;\; p_2^* d B \,. \end{displaymath} This means that $d B$ actually descends to a 3-form on $X$. The \textbf{curvature} associated with the connection on a line bundle gerbe is the unique 3-form on $X$ \begin{displaymath} H \in \Omega^3(X) \end{displaymath} such that \begin{displaymath} \pi^* H = d B \,. \end{displaymath} The deRham class $[H]$ of this 3-form is the image in real cohomology of the class in integral coholomology classifying the bundle gerbe. \hypertarget{for_principal_bundle_gerbes}{}\paragraph*{{for principal bundle gerbes}}\label{for_principal_bundle_gerbes} A connection on a $G$-principal bundle gerbe is \begin{itemize}% \item a $\mathrm{Lie}(G)$-valued 2-form on $Y$ \begin{displaymath} B \in \Omega^2(Y,\mathrm{Lie}(G)) \end{displaymath} \item together with a $\mathrm{Lie}(\mathrm{Aut}(G))$-valued 1-form on $Y$ \begin{displaymath} A \in \Omega^1(Y,\mathrm{Lie}(\mathrm{Aut}(G))) \end{displaymath} \item and a certain twisted notion of connection on the $G$-bundle $B$ \item satisfying a couple of conditions that reduce to those described above in the case $G = U(1)$. \end{itemize} For the case that $F_{A} + \mathrm{ad} B = 0$, these conditions are nothing but a tetrahedron law on a 2-functor from 2-paths in $Y$ to the category $\Sigma(G\mathrm{BiTor})$. This is discussed in \href{http://arxiv.org/abs/math.DG/0511710}{math.DG/0511710}. For the more general case a choice for these conditions that harmonizes with the conditions found for (proper) gerbes with connection by Breen \& Messing in \href{http://arxiv.org/abs/math.AG/0106083}{math.AG/0106083} has been given by Aschieri, Cantini \& Juro in\newline \href{http://arxiv.org/abs/hep-th/0312154}{hep-th/0312154}. \hypertarget{surface_transport}{}\subsubsection*{{Surface transport}}\label{surface_transport} From a line bundle gerbe with connection one obtains a notion of [[parallel transport]] along surfaces in a way that generalizes the procedure for locally trivialized fiber bundles with connection. Recall that in the case of fiber bundles, the holonomy associated to a based loop $\gamma$ is obtained by \begin{itemize}% \item choosing a triangulation of the loop (i.e., a decomposition into intervals) such that each vertex sits in a double intersection $U_{ij}$ and such that each edge sits in a patch $U_i$ \item choosing for each edge a lift into $Y = \sqcup_i U_i$ \item choosing for each vertex a lift into $Y^{[2]} = \sqcup_{ij} U_i\cap U_j$ \item assigning to each edge lifted to $U_i$ the transport computed from the connection 1-form $a_i$ \item assigning to each vertex lifted to $U_i \cap U_j$ the value of the transition function $g_{ij}$ at that point \item multiplying these data in the order given by $\gamma$ . \end{itemize} For bundle gerbes this generalizes to a procedure that assigns a triangulation to a closed surface, that lifts faces, edges, and vertices to single, double and triple intersections, respectively, and which assigns the exponentiated integrals of the 2-form over faces, of the connection 1-form over edges, and assigns the isomorphism $\mu_{ijk}$ to vertices. For the abelian case (line bundle gerbes) this procedure has been first described in \begin{itemize}% \item K. Gawedzki \& N. Reis, \emph{WZW branes and Gerbes} (\href{http://arxiv.org/abs/hep-th/0205233}{arXiv}) \end{itemize} based on \begin{itemize}% \item O. Alvarez, \emph{Topological quantization and cohomology} Commun. Math. Phys. 100 (1985), 279-309. \end{itemize} Further discussion can be found in \begin{itemize}% \item A. Carey, S. Johnson \& M. Murray, \emph{Holonomy on D-branes}, (\href{http://arxiv.org/abs/hep-th/0204199}{arXiv}) \end{itemize} Gawedzki and Reis showed this way that the Wess-Zumino term in the WZW-model is nothing but the surface holonomy of a (line bundle) gerbe. In terms of string physics this means that the string (the $2$-particle) couples to the Kalb-Ramond field -- which hence has to be interpreted as the connection (``and curving'') of a gerbe -- in a way that categorifies the coupling of the electromagnetically charged ($1$-)particle to a line bundle. The necessity to interpret the Kalb--Ramond field as a connection on a gerbe was originally discussed in \begin{itemize}% \item D. Freed and E. Witten \emph{Anomalies in string theory with D-branes}, Asian J. Math. 3 (1999), 819-851 (\href{http://arxiv.org/abs/hep-th/9907189}{arXiv}) \end{itemize} Underlying the Gawedzki--Reis formula is a general mechanism of transition of transport $2$-functors, described in \begin{itemize}% \item [[Urs Schreiber]], [[Konrad Waldorf]], \emph{Connections on non-abelian gerbes and their holonomy}, Theory and Applications of Categories, Vol. 28, 2013, No. 17, pp 476-540. (\href{http://www.tac.mta.ca/tac/volumes/28/17/28-17abs.html}{TAC}, \href{http://arxiv.org/abs/0808.1923}{arXiv:0808.1923}, ) \end{itemize} and similarly in \begin{itemize}% \item Joao Faria Martins, Roger Picken, \emph{A Cubical Set Approach to 2-Bundles with Connection and Wilson Surfaces} (\href{http://arxiv.org/abs/0808.3964}{arXiv}) \end{itemize} This applies to more general situations than ordinary line bundle gerbes with connection. The generalization to unoriented surfaces (hence to type I strings) was given in \begin{itemize}% \item K. Waldorf, C. Schweigert \&{} U. S., \emph{Unoriented WZW Models and Holonomy of Bundle Gerbes} (\href{http://arxiv.org/abs/hep-th/0512283}{arXiv}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} (\ldots{}) [[!redirects connections on a bundle gerbes]] [[!redirects connections on bundle gerbess]] [[!redirects bundle gerbe with connection]] [[!redirects bundle gerbes with connection]] \end{document}