\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connection on a cubical set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{symmetric_and_asymmetric_connections}{Symmetric and asymmetric connections}\dotfill \pageref*{symmetric_and_asymmetric_connections} \linebreak \noindent\hyperlink{definition_of_symmetric_connections_using_generators_and_relations}{Definition of symmetric connections using generators and relations}\dotfill \pageref*{definition_of_symmetric_connections_using_generators_and_relations} \linebreak \noindent\hyperlink{definition_as_presheaves_on_strict_test_categories}{Definition as presheaves on strict test categories}\dotfill \pageref*{definition_as_presheaves_on_strict_test_categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_a_model_for_homotopy_theory}{As a model for homotopy theory}\dotfill \pageref*{as_a_model_for_homotopy_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In a [[cubical set]], you are guaranteed for every $n$-cell (which can be drawn as a 1-cell) \begin{displaymath} a\stackrel{f}{\to}b \end{displaymath} that there is the identity $(n+1)$-cell (which can be drawn as a 2-cell) of the form \begin{displaymath} \itexarray{ a & \stackrel{f}{\to} & b \\ \darr^{Id} & \Downarrow^{Id} & \darr^{Id} \\ a & \stackrel{f}{\to} & b } \end{displaymath} A cubical set is said to have \emph{connections} if in addition it has for every $n$-cell $a\stackrel{f}{\to}b$ also $(n+1)$-cells of the form \begin{displaymath} \itexarray{ a & \stackrel{f}{\to} & b \\ \darr^{f} & \Downarrow & \darr^{Id} \\ b & \stackrel{Id}{\to} & b } \end{displaymath} And so forth. You should think of this as saying that the ``thin'' cell \begin{displaymath} a\underoverset{f}{f}{\rightrightarrows}b \end{displaymath} is regarded as a degenerate cube by the cubical set in all the possible ways. So it's a very natural condition, particularly if you think of all these cubical cells as cubical paths in some space. \hypertarget{symmetric_and_asymmetric_connections}{}\subsection*{{Symmetric and asymmetric connections}}\label{symmetric_and_asymmetric_connections} In the literature, two different definitions of connections on a cubical set are considered. The first definition treats edges of cubes as directed from 0 to 1, whereas the second definition assumes them to be completely symmetric. Hence, we talk about symmetric or asymmetric connections. We emphasize that ordering of edges has nothing to do with the ordering of coordinates, the latter is always present and is analogous to the ordering of vertices in simplices. In complete analogy to [[simplicial sets]], cubical sets with symmetric or asymmetric connections can be defined as presheaves on certain categories, which happen to be [[strict test categories]]. \hypertarget{definition_of_symmetric_connections_using_generators_and_relations}{}\subsection*{{Definition of symmetric connections using generators and relations}}\label{definition_of_symmetric_connections_using_generators_and_relations} If $K= \{K_n| n \geq 0\}$ is a [[cubical set]], then a \textbf{connection structure on $K$} consists of functions $\Gamma^+_i, \Gamma^- _i: K_n \to K_{n+1}$, $i=1, \ldots \, , n; n \geq 1$, satisfying the relations for $\alpha, \beta=\pm$: \begin{enumerate}% \item $\Gamma^\alpha_i\Gamma^\beta_j= \Gamma^\beta_{j+1} \Gamma^\alpha _i$ if $i \lt j$; \item $\Gamma^\alpha_i\Gamma^\alpha_i= \Gamma^\alpha_{i+1} \Gamma^\alpha _i$; \item $\partial^\alpha_j \Gamma^\alpha_j= \partial ^\alpha_{j+1} \Gamma ^\alpha_j = id$; \item $\partial^\alpha_j \Gamma^{-\alpha}_j= \partial ^\alpha_{j+1} \Gamma ^{-\alpha}_j = \varepsilon _j \partial^\alpha_j$; \item $\partial^\alpha_i \Gamma ^\beta_j = \begin{cases}\Gamma^\beta_{j-1} \partial ^\alpha _i & \text{if }\; i \lt j \\ \Gamma^\beta_j \partial ^\alpha _{i-1} & \text{if }\; i \gt j+1; \end{cases}$ \item $\Gamma^\alpha_j \varepsilon_j = \varepsilon^2_j = \varepsilon_{j+1}\varepsilon _j$; \item $\Gamma^\alpha_i \varepsilon _j = \begin{cases} \varepsilon_{j+1} \Gamma^\alpha _i & \text {if }\; i \lt j \\ \varepsilon _j \Gamma^\alpha_{i-1} & \text{if }\; i \gt j ; \end{cases}$ \end{enumerate} The connections are to be thought of as ``extra degeneracies''. A degenerate cube of type $\varepsilon_j x$ has opposite faces equal and all other faces degenerate. A cube of type $\Gamma_i^\alpha x$ has a pair of adjacent faces equal and all other faces of type $\Gamma_j^\alpha y$ or $\varepsilon_j y$ . So this makes the cubical theory nearer to the simplicial. Cubical complexes with this, and other, structures have also been considered by Evrard. The first appearance of this notion in dimension $2$ was in the paper by Brown and Spencer listed below, and used to obtain an equivalence between crossed modules and edge symmetric double groupoids with connection. Such connections on cubical sets were introduced in 1981 by Brown and Higgins in order to obtain the equivalence of their ``cubical [[∞-groupoids]]'' with [[crossed complexes]]. They are also essential to allow the notion of ``commutative $n$-shell'' in such a structure. \hypertarget{definition_as_presheaves_on_strict_test_categories}{}\subsection*{{Definition as presheaves on strict test categories}}\label{definition_as_presheaves_on_strict_test_categories} $\backslash$begin\{definition\} The category of cubes with symmetric connections is defined as follows. We start with the [[monoidal category]] whose objects are finite [[ordered sets]], denoted $(S,\le)$, morphisms $(S,\le)\to(T,\le)$ are maps of sets $\{0,1\}^S\to\{0,1\}^T$, and monoidal products are given by disjoint unions on objects and cartesian products on morphisms. The category of cubes with symmetric connection is the monoidal subcategory of this monoidal category generated by the following four types of morphisms: all morphisms $(S,\le)\to(\emptyset,\le)$ and $(\emptyset,\le)\to(S,\le)$, and morphisms $(S,\le)\to(1,\le)$ that compute the maximum or minimum of an $S$-tuple of zeros and ones. For cubes with asymmetric connection we take the maps that compute the maximum, but not the minimum. $\backslash$end\{definition\} $\backslash$begin\{definition\} The category of cubical sets with symmetric or asymmetric connections is the category of [[presheaves of sets]] on the category of cubes with symmetric or asymmetric connections. $\backslash$end\{definition\} It would seem that\ldots{} Alternatively, let $\mathcal{P}_{\subset}$ be the category whose objects are [[finite set]]s with morphisms from $m$ to $n$ the functions $\mathcal{P}m \to \mathcal{P}n$ preserving $\subseteq$. There is a faithful essentially-surjective functor $J : \box \to \mathcal{P}_{\subset}$ such that restriction of presheaves along $J$ is exactly ``forget connection structure''. There is also a faithful representation of $\mathcal{P}_{\subset}$ in polyhedra-with-boundary and piecewise-linear maps, valued on objects $n\mapsto [0,1]^n$ with the coordinate-ordered simplicial subdivision of $[0,1]^n$. This induces a connection structure on the singular cubical set of a topological space. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_a_model_for_homotopy_theory}{}\subsubsection*{{As a model for homotopy theory}}\label{as_a_model_for_homotopy_theory} The ordinary [[cube category]] is a \emph{[[test category]]}. This means that bare [[cubical sets]] carry the structure of a [[category with weak equivalences]] whose [[homotopy category]] is that of [[∞-groupoids]]. But the category of cubes \emph{with connection} is even a \emph{[[strict test category]]} (\hyperlink{Maltsiniotis}{Maltsiniotis, 2008}). This means that under [[geometric realization]] (see the discussion at [[homotopy hypothesis]]) the [[cartesian product]] of cubical sets with connection is sent to the correct product [[homotopy type]]. The lack of this property for cubical sets without connections was one of the original reasons for abandoning Kan's initial cubical approach to combinatorial [[homotopy theory]] in favour of the simplicial approach; the implications of this new result have yet to be thought through. Another reason was that cubical groups were in general not Kan complexes; however cubical groups with connection are Kan complexes. See the paper by Tonks listed below. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The prime example of a cubical set with connections is the singular cubical complex $KX$ of a [[topological space]] $X$. Here for $n \ge 0$ $K_n$ is the set of singular $n$-cubes in $X$ (i.e. continuous maps $I^n \to X$) and the connection $\Gamma_i^\alpha :K_{n } \to K_{n+1}$ is induced by the map $\gamma_i^\alpha : I^{n+1} \to I^{n}$ defined by \begin{displaymath} \gamma _i^\alpha (t_1 ,t_2 ,\ldots \, ,t_{n+1} ) = (t_1 ,t_2 ,\ldots\, ,t_{i-1},A(t_i ,t_{i+1}),t_{i+2},\ldots \, ,t_{n+1} ) \end{displaymath} where $A(s,t)=\max(s,t), \min(s,t)$ as $\alpha=-,+$ respectively. The first hint of such a general structure came in the paper by Brown and Spencer given below. The term ``[[connection]]'' was used there because of a relation of a generalisation of this idea to [[connection on a bundle|path-connections]] in differential geometry. A principal $G$-bundle $E$ over $B$ gives rise to the Ehresmann groupoid $Equ(E)$ of $G$-maps between the fibres, and the Moore paths $\Lambda$ on this form a double category $D$ with $Equ(E)$ and $\Lambda(B)$ as edge categories. A connection $\Gamma$ is then a functor from $\Lambda(B)$ to one of the category structures on $D$ which gives a smooth lifting of paths to transport of the fibres. This is the origin of the term [[transport law]] for the relation of connections to composition. \textbf{Discussion} There is a discussion of cubical vs simplicial singular homology and for other aspects at (\href{http://mathoverflow.net/questions/3656/cubical-vs-simplicial-singular-homology}{this mathoverflow}). A complete cubical approach to algebraic topology at the border between homotopy and homology is given in the book discussed in these pages at [[Nonabelian Algebraic Topology]] see (\href{https://ncatlab.org/nlab/show/Nonabelian+Algebraic+Topology}{here}). As an example, the theory shows how the [[Relative Hurewicz Theorem]] follows from a Higher Homotopy Seifert-van Kampen Theorem, withut using singular homology. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ronnie Brown]] and C.B. Spencer, ``Double groupoids and crossed modules'', Cah. Top. G\'e{}om. Diff. 17 (1976) 343--362. \item Evrard, M., ``Homotopie des complexes simpliciaux et cubiques'', Preprint(1976). \item Brown, R. and Higgins, P.J., ``On the algebra of cubes'', \emph{J. Pure Appl. Algebra} 21 (1981) 233--260. \item F. Al-Agl, R. Brown and R. Steiner, ``Multiple categories: the equivalence between a globular and cubical approach'', \emph{Advances in Mathematics}, 170 (2002), 71--118. \item M. Grandis and L. Mauri, ``Cubical sets and their site'', \emph{Theory Applic. Categories}, 11 (2003) 185--201. \item P.J. Higgins, ``Thin elements and commutative shells in cubical $\omega$-categories'', \emph{Theory Appl. Categ.} 14 (2005) 60--74. \end{itemize} The statement that cubical groups with connections are Kan complexes is due to \begin{itemize}% \item A. Tonks, ``Cubical groups which are Kan'', \emph{J. Pure Appl. Algebra}, 81 (1992) 83--87. \end{itemize} Cubical sets with connection are used in the following paper: \begin{itemize}% \item I. Patchkoria ``Cubical approach to derived functors'' Homology Homotopy Appl. Volume 14, Number 1 (2012), 133-158. \end{itemize} and in the following in preference to simplicial methods to take resolutions in an analytic motivic setting: \begin{itemize}% \item J. Ayoub - ``L'alg\`e{}bre de Hopf et le groupe de Galois motiviques d'un corps de caract\'e{}ristique nulle, I'' \href{http://user.math.uzh.ch/ayoub/PDF-Files/GaloisMotivic-1.pdf}{pdf}, \item A Vezzani - ``A motivic version of the theorem of Fontaine and Wintenberger'' arXiv:1405.4548, \end{itemize} The statement that cubes with connection form a [[strict test category]] is due to \begin{itemize}% \item [[Georges Maltsiniotis]], \emph{La cat\'e{}gorie cubique avec connections est une cat\'e{}gorie test stricte}, preprint, 2009, 1--16. (\href{http://www.intlpress.com/HHA/v11/n2/a15/}{web}) \end{itemize} based on \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Les pr\'e{}faisceaux comme mode\`e{}le des types d'homotopie}, Ast\'e{}risque, 308 (2006) \end{itemize} [[!redirects connection on cubical sets]] [[!redirects connections on a cubical set]] [[!redirects connections on cubical sets]] \end{document}