\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{connection on a smooth principal infinity-bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_braided_groups}{For braided $\infty$-groups}\dotfill \pageref*{for_braided_groups} \linebreak \noindent\hyperlink{ByLieIntegration}{For $\infty$-groups obtained by Lie integration}\dotfill \pageref*{ByLieIntegration} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{InfGaugeTrafo}{1-Morphisms: integration of infinitesimal gauge transformations}\dotfill \pageref*{InfGaugeTrafo} \linebreak \noindent\hyperlink{ordinary_connections_on_principal_1bundles}{Ordinary connections on principal 1-bundles}\dotfill \pageref*{ordinary_connections_on_principal_1bundles} \linebreak \noindent\hyperlink{further_examples}{Further examples}\dotfill \pageref*{further_examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In every [[cohesive (∞,1)-topos]] there is an that gives rise to a notion of \emph{connection} on [[principal ∞-bundle]]s. We describe here details of the realization of this general abstract structure in the cohesive $(\infty,1)$-topos [[Smooth∞Grpd]] of [[smooth ∞-groupoid]]s. For $G$ an [[∞-Lie group]], a \emph{connection} on a smooth $G$-[[principal ∞-bundle]] is a structure that supports the [[Chern-Weil homomorphism in Smooth∞Grpd]]: it interpolates between the [[nonabelian cohomology]] class $c \in H^1_{smooth}(X,G)$ of the bundle and the refinements to [[ordinary differential cohomology]] of its [[characteristic class]]es: the [[curvature characteristic form|curvature characteristic class]]es. This generalizes the notion of [[connection on a bundle]] and the ordinary [[Chern-Weil homomorphism]] in [[differential geometry]]. See the at [[Chern-Weil theory in Smooth∞Grpd]] and the page [[∞-Chern-Weil theory introduction]] for more background. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_braided_groups}{}\subsubsection*{{For braided $\infty$-groups}}\label{for_braided_groups} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] equippd with [[differential cohesion]] and let $\mathbb{G} \in Grp(\mathbf{H})$ be a [[braided ∞-group]]. Write \begin{displaymath} curv_{\mathbb{G}} = \theta_{\mathbf{B}\mathbb{G}} \;\colon\; \mathbf{B}\mathbb{G} \to \flat_{dR}\mathbf{B}^2 \mathbb{G} \end{displaymath} for the [[Maurer-Cartan form]] on the [[delooping]] [[∞-group]] $\mathbf{B}\mathbb{G} \in Grp(\mathbf{H})$. Let \begin{displaymath} \Omega(-,\mathbb{G}) \to \flat_{dR}\mathbf{B}^2 \mathbb{G} \end{displaymath} be the morphism out of a [[0-truncated]] object which is universal with the property that for $\Sigma \in \mathbf{H}$ any [[manifold]], the induced [[internal hom]] map \begin{displaymath} [\Sigma, \Omega(-,\mathbb{G})] \to [\Sigma, \flat_{dR}\mathbf{B}^2 \mathbb{G}] \end{displaymath} is a [[1-epimorphism]]. Then write $\mathbf{B}\mathbb{G}_{conn}$ for the [[(∞,1)-pullback]] in \begin{displaymath} \itexarray{ \mathbf{B}\mathbb{G}_{conn} &\to& \Omega(-,\mathbb{G}) \\ \downarrow && \downarrow \\ \mathbf{B}\mathbb{G} &\stackrel{curv_{\mathbb{G}}}{\to}& \flat_{dR}\mathbf{B}^2 \mathbb{G} } \,. \end{displaymath} We say that $\mathbf{B}\mathbb{G}_{conn}$ is the [[moduli ∞-stack]] of \textbf{$\mathbb{G}$-principal $\infty$-connections.} For instance for $\mathbb{G} = \mathbf{B}^{n-1}U(1)$ the [[circle n-group]] the moduli $n$-stack $\mathbf{B}^n U(1)_{conn}$ is presented by the [[Deligne complex]] for [[ordinary differential cohomology]] in degree $(n+1)$, hence is the moduli $n$-stack for [[circle n-bundles with connection]]. \hypertarget{ByLieIntegration}{}\subsubsection*{{For $\infty$-groups obtained by Lie integration}}\label{ByLieIntegration} We assume that the reader is familiar with the notation and constructions discussed at [[Smooth∞Grpd]]. The following definition may be understood as a direct generalization of the description of ordinary $G$-connections as cocycles in the stack $\mathbf{B}G_{conn}$ as discussed at [[connection on a bundle]], in view of the characterization of \href{Weil+algebra#CharacterizationInSmoothTopos}{Weil algebra in the smooth infinity-topos} [[!include Weil algebra abstractly -- table]] We discuss now connections on those $G$-[[principal ∞-bundle]]s for which $G \in$ [[Smooth∞Grpd]] is an [[∞-Lie group|smooth ∞-group]] that arises from [[Lie integration]] of an [[L-∞ algebra]] $\mathfrak{g}$. Let $\mathfrak{g} \in L_\infty \stackrel{CE}{\hookrightarrow}$ [[dgAlg]]${}^{op}$ be an [[L-∞ algebra]] over the [[real number]]s and of [[finite type]] with [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g})$ and [[Weil algebra]] $W(\mathfrak{g})$. For $X$ a [[smooth manifold]], write $\Omega^\bullet(X) \in dgAlg$ for the [[de Rham complex]] of smooth [[differential form]]s. For $k \in \mathbb{N}$ let $\Delta^k$ be the standard $k$-[[simplex]] regarded as a smooth [[manifold with corners]] in the standard way. Write $\Omega^\bullet_{si}(X \times \Delta^k)$ for the sub-[[dg-algebra]] of differential forms with sitting instants perpendicular to the boundary of the simplex, and $\Omega^\bullet_{si,vert}(X\times \Delta^k)$ for the further sub-dg-algebra of [[vertical differential form]]s with respect to the canonical projection $X \times \Delta^k \to X$. \begin{udefn} A morphism \begin{displaymath} \Omega^\bullet(X) \leftarrow W(\mathfrak{g}) : A \end{displaymath} in [[dgAlg]] we call an [[∞-Lie algebra valued differential forms|L-∞ algebra valued differential form]] with values in $\mathfrak{g}$, dually a morphism of [[∞-Lie algebroid]]s \begin{displaymath} A : T X \to inn(\mathfrak{g}) \end{displaymath} from the [[tangent Lie algebroid]] to the [[Weil algebra|inner automorphism ∞-Lie algebra]]. Its [[curvature]] is the composite of morphisms of [[graded vector space]]s \begin{displaymath} \Omega^\bullet(X) \stackrel{A}{\leftarrow} W(\mathfrak{g}) \stackrel{F_{(-)}}{\leftarrow} \mathfrak{g}^*[2] : F_{A} \end{displaymath} that injects the shifted generators into the [[Weil algebra]]. Precisely if the curvatures vanish does the morphism factor through the [[Chevalley-Eilenberg algebra]] \begin{displaymath} (F_A = 0) \;\;\Leftrightarrow \;\; \left( \itexarray{ && CE(\mathfrak{g}) \\ & {}^{\mathllap{\exists A_{flat}}}\swarrow & \uparrow \\ \Omega^\bullet(X) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) } \right) \end{displaymath} in which case we call $A$ \textbf{flat}. The [[curvature characteristic form]]s of $A$ are the composite \begin{displaymath} \Omega^\bullet(X) \stackrel{A}{\leftarrow} W(\mathfrak{g}) \stackrel{\langle F_{(-)} \rangle}{\leftarrow} inv(\mathfrak{g}) : \langle F_A\rangle \,, \end{displaymath} where $inv(\mathfrak{g}) \to W(\mathfrak{g})$ is the inclusion of the [[invariant polynomial]]s. \end{udefn} We define now [[simplicial presheaves]] over the [[site]] [[CartSp]]${}_{smooth} \hookrightarrow$ [[SmoothMfd]] of [[Cartesian space]]s and [[smooth function]]s between them. \begin{udefn} Write $\exp(\mathfrak{g}) \in [CartSp_{smooth}^{op}, sSet]$ for the simplicial presheaf given by \begin{displaymath} \exp(\mathfrak{g}) : (U,[k]) \mapsto \left\{ \Omega^\bullet_{si,vert}(U \times\Delta^k) \stackrel{A_{vert}}{\leftarrow} CE(\mathfrak{g}) \right\} \end{displaymath} (the untruncated [[Lie integration]] of $\mathfrak{g}$). Write $\exp(\mathfrak{g})_{diff} \in [CartSp_{smooth}^{op}, sSet]$ for the simplicial presheaf given by \begin{displaymath} \exp(\mathfrak{g})_{diff} : (U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet_{si,vert}(U \times\Delta^k) &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) \\ \uparrow && \uparrow \\ \Omega^\bullet_{si}(U \times \Delta^k) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) } \right\} \,. \end{displaymath} Write $\exp(\mathfrak{g})_{ChW} \in [CartSp_{smooth}^{op}, sSet]$ for the simplicial presheaf given by \begin{displaymath} \exp(\mathfrak{g})_{ChW} : (U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet_{si,vert}(U \times\Delta^k) &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) \\ \uparrow && \uparrow \\ \Omega^\bullet_{si}(U \times \Delta^k) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) \\ \uparrow && \uparrow \\ \Omega^\bullet(U) &\stackrel{\langle F_A\rangle}{\leftarrow}& inv(\mathfrak{g}) } \right\} \,. \end{displaymath} Define the [[simplicial presheaf]] $\exp(\mathfrak{g})_{conn}$ by \begin{displaymath} \exp(\mathfrak{g})_{conn}(U) : [k] \mapsto \left\{ \Omega^\bullet_{si}(U \times \Delta^k) \stackrel{A}{\leftarrow} W(\mathfrak{g}) \;\; | \;\; \forall v \in \Gamma(T \Delta^k) : \iota_v F_A = 0 \right\} \end{displaymath} \end{udefn} Here on the right we have in each case the [[set]]s of horizontal morphisms in [[dgAlg]] that make [[commuting diagram]]s in [[dgAlg]] as indicated, with the vertical morphisms being the canonical projections and inclusions. The functoriality in $f : K \to U$ and $\rho : [k] \to [l]$ is by the evident precomposition with the pullback of differential forms $\Omega^\bullet(U \times \Delta^k) \stackrel{(f,id)^*}{\to} \Omega^\bullet(K \times \Delta^k)$ and $\Omega^\bullet(U \times \Delta^l) \stackrel{(id,\rho)^*}{\leftarrow} \Omega^\bullet(U, \times \Delta^k)$. \begin{uprop} There are canonical morphisms in $[CartSp_{smooth}^{op},sSet]$ between these objects \begin{displaymath} \itexarray{ \exp(\mathfrak{g})_{conn} &\hookrightarrow& \exp(\mathfrak{g})_{ChW} &\hookrightarrow& \exp(\mathfrak{g})_{diff} \\ && && \downarrow \\ && && \exp(\mathfrak{g}) } \,, \end{displaymath} where the horizontal morphisms are [[monomorphism]]s of [[simplicial presheaves]] and the vertical morphism is over each $U \in CartSp$ an equivalence of [[Kan complexes]] (it is a weak equivalence between fibrant objects in the projective [[model structure on simplicial presheaves]]). \end{uprop} \begin{proof} The inclusion $\exp(\mathfrak{g})_{ChW} \hookrightarrow \exp(\mathfrak{g})_{dff}$ is clear. The weak equivalence $\exp(\mathfrak{g})_{diff} \to \exp(\mathfrak{g})$ is discussed at [[Smooth∞Grpd]] (but is also directly verified). To see the inclusion $\exp(\mathfrak{g})_{conn} \hookrightarrow \exp(\mathfrak{g})_{ChW}$ we need to check that the horizonality condition $\iota_v F_A = 0$ on the [[curvature]] of a $\mathfrak{g}$-valued form $A$ for all [[vector field]]s $v$ tangent to the simplex implies that all the [[curvature characteristic form]]s $\langle F_A\rangle$ are \emph{basic forms} that ``descend to $U$'', hence that are in the image of the inclusion $\Omega^\bullet(U) \to \Omega^\bullet_{si}(U \times \Delta^k)$. For this it is sufficient to show that for all $v \in \Gamma(T \Delta^k)$ we have \begin{enumerate}% \item $\iota_v \langle F_A \rangle = 0$; \item $\mathcal{L}_v \langle F_A \rangle = 0$ \end{enumerate} where in the second line we have the [[Lie derivative]] $\mathcal{L}_v$ along $v$. The first condition is evidently satisfied if already $\iota_v F_A = 0$. The second condition follows with [[Cartan calculus]] and using that $d_{dR} \langle F_A\rangle = 0$ (which holds as a consequence of the definition of [[invariant polynomial]]): \begin{displaymath} \mathcal{L}_v \langle F_A \rangle = d \iota_v \langle F_A \rangle + \iota_v d \langle F_A \rangle = 0 \,. \end{displaymath} \end{proof} \begin{ulemma} For a general [[L-∞ algebra]] $\mathfrak{g}$ the [[curvature]] forms $F_A$ themselves are not necessarily closed (rather they satisfy the [[Bianchi identity]]), hence requiring them to have no component along the simplex does not imply that they descend. This is different for abelian [[L-∞ algebra]]s: for them the curvature forms themselves are already closed, and hence are themselves already curvature characteristics that do descent. \end{ulemma} For $n \in \mathbb{N}$ let $\mathbf{cosk}_{n+1} : sSet \to sSet$ be the [[simplicial coskeleton]] functor. Its prolongation to simplicial presheaves we denote here $\tau_n$ and write \begin{displaymath} \tau_n \exp(\mathfrak{g}) \in [CartSp_{smooth}^{op}, sSet] \end{displaymath} etc. This is the [[delooping]] \begin{displaymath} \tau_n \exp(\mathfrak{g}) = \mathbf{B}G \end{displaymath} of the universal [[Lie integration]] of $\mathfrak{g}$ to an [[∞-Lie group|smooth n-group]] $G$. \begin{udef} For any $X \in [CartSp_{smooth}^{op}, sSet]$ and $\hat X \to X$ any cofibrant [[resolution]] in the local projective [[model structure on simplicial presheaves]] (see [[Smooth∞Grpd]] for details), we say that the [[sSet]]-[[hom object]] \begin{itemize}% \item $[CartSp_{smooth}^{op}, sSet](\hat X, \tau_n \exp(\mathfrak{g}))$ is the [[∞-groupoid]] of smooth $G$-[[principal ∞-bundle]]s on $X$; \item $[CartSp_{smooth}^{op}, sSet](\hat X, \tau_n \exp(\mathfrak{g})_{diff})$ is the [[∞-groupoid]] of smooth $G$-[[principal ∞-bundle]]s on $X$ equipped with \textbf{pseudo $\infty$-connection}; \item $[CartSp_{smooth}^{op}, sSet](\hat X, \tau_n \exp(\mathfrak{g})_{conn})$ is the [[∞-groupoid]] of smooth $G$-[[principal ∞-bundle]]s on $X$ equipped with \textbf{$\infty$-connection}. \end{itemize} \end{udef} \begin{uremark} In view of this definition we may read the \hyperlink{SequenceOfInclusionsOfCoefficients}{above} sequence of morpisms of coefficient objects as follows: \begin{displaymath} \itexarray{ \exp(\mathfrak{g})_{conn} &&& genuine\;connections \\ \downarrow \\ \exp(\mathfrak{g})_{ChW} &&& pseudo-connection\;with\;global\;curvature\;characteristics \\ \downarrow \\ \exp(\mathfrak{g})_{diff} &&& pseudo-connections \\ \downarrow^{\mathrlap{\simeq}} \\ \exp(\mathfrak{g}) &&& bare bundles } \,, \end{displaymath} As we shall see in more detail below, the components of an $\infty$-connection in terms of the above diagrams we may think of as follows: \begin{displaymath} \itexarray{ \Omega^\bullet(U \times \Delta^k)_{vert} &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) &&& gauge\;transformation \\ \uparrow && \uparrow \\ \Omega^\bullet(U \times \Delta^k) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) &&& \mathfrak{g}-valued\;form \\ \uparrow && \uparrow \\ \Omega^\bullet(U) &\stackrel{\langle F_A\rangle}{\leftarrow}& inv(\mathfrak{g}) &&& curvature\;characteristic\;forms } \end{displaymath} \end{uremark} \begin{uremark} In full [[Chern-Weil theory in Smooth∞Grpd]] the fundamental object of interest is really $\exp(\mathfrak{g})_{diff}$ -- the object of [[pseudo-connection]]s, which serves as the correspondence object for an [[∞-anafunctor]] out of $\exp(\mathfrak{g})$ that presents the differential characteristic classes on $\exp(\mathfrak{g})$. From an abstract point of view the other objects only serve the purpose of picking particularly nice representatives. This distinction is important: over objects $X \in$ [[Smooth∞Grpd]] that are not [[smooth manifold]]s but for instance [[orbifold]]s, the genuine $\mathfrak{g}$-connections for general higher $\mathfrak{g}$ do \emph{not} exhaust all nonabelian differential cocycles. This just means that not every differential class in this case does have a nice representative. \end{uremark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{InfGaugeTrafo}{}\subsubsection*{{1-Morphisms: integration of infinitesimal gauge transformations}}\label{InfGaugeTrafo} The 1-[[morphism]]s in $\exp(\mathfrak{g})_{conn}(U)$ may be thought of as [[gauge transformation]]s between $\mathfrak{g}$-valued forms. We unwind what these look like concretely. \begin{udefn} Given a 1-morphism in $\exp(\mathfrak{g})(X)$, represented by $\mathfrak{g}$-valued forms \begin{displaymath} \Omega^\bullet(U \times \Delta^1) \leftarrow W(\mathfrak{g}) : A \end{displaymath} consider the unique decomposition \begin{displaymath} A = A_U + ( A_{vert} := \lambda \wedge d s) \; \; \,, \end{displaymath} with $A_U$ the horizonal differential form component and $s : \Delta^1 = [0,1] \to \mathbb{R}$ the canonical [[coordinate]]. We call $\lambda$ the \textbf{gauge parameter} . This is a function on $\Delta^1$ with values in 0-forms on $U$ for $\mathfrak{g}$ an ordinary [[Lie algebra]], plus 1-forms on $U$ for $\mathfrak{g}$ a [[Lie 2-algebra]], plus 2-forms for a Lie 3-algebra, and so forth. \end{udefn} We describe now how this enccodes a gauge transformation \begin{displaymath} \lambda : A_0(s=0) \stackrel{}{\to} A_U(s = 1) \,. \end{displaymath} \begin{ulemma} We have \begin{displaymath} \frac{d}{d s} A_U = (d_U \lambda + [\lambda \wedge A] + [\lambda \wedge A \wedge A] + \cdots) + \iota_{\partial_s} F_A \,, \end{displaymath} where the sum is over all higher brackets of the [[L-∞ algebra]] $\mathfrak{g}$. \end{ulemma} \begin{proof} This is the result of applying the contraction $\iota_{\partial s}$ to the defining equation for the [[curvature]] $F_A$ of $A$ using the nature of the [[Weil algebra]]: \begin{displaymath} F_A = d_{dR} A + [A \wedge A] + [A \wedge A \wedge A] + \cdots \end{displaymath} and inserting the above decomposition for $A$. \end{proof} \begin{udef} Define the \textbf{[[covariant derivative]] of the gauge parameter} to be \begin{displaymath} \nabla_A \lambda := d \lambda + [A \wedge \lambda] + [A \wedge A \wedge \lambda] + \cdots \,. \end{displaymath} \end{udef} In this notation we have \begin{itemize}% \item the general identity \begin{equation} \frac{d}{d s} A_U = \nabla \lambda + (F_A)_s \label{ShiftedGaugeTrafo}\end{equation} \item the \textbf{horizontality} or \textbf{[[rheonomy]]} constraint or \textbf{[[Ehresmann connection|second Ehresmann condition]]} $\iota_{\partial_s} F_A = 0$, the [[differential equation]] \begin{equation} \frac{d}{d s} A_U = \nabla \lambda \,. \label{GaugeTrafo}\end{equation} \end{itemize} This is known as the equation for \textbf{infinitesimal [[gauge transformation]]s} of an $L_\infty$-algebra valued form. \begin{ulemma} By [[Lie integration]] we have that $A_{vert}$ -- and hence $\lambda$ -- defines an element $\exp(\lambda)$ in the [[∞-Lie group]] that integrates $\mathfrak{g}$. The unique solution $A_U(s = 1)$ of the above [[differential equation]] at $s = 1$ for the initial values $A_U(s = 0)$ we may think of as the result of acting on $A_U(0)$ with the gauge transformation $\exp(\lambda)$. \end{ulemma} \hypertarget{ordinary_connections_on_principal_1bundles}{}\subsubsection*{{Ordinary connections on principal 1-bundles}}\label{ordinary_connections_on_principal_1bundles} \begin{uprop} \textbf{(connections on ordinary bundles)} For $\mathfrak{g}$ an ordinary [[Lie algebra]] with simply connected [[Lie group]] $G$ and for $\mathbf{B}G_{conn}$ the [[groupoid of Lie algebra-valued forms]] we have an equivalence \begin{displaymath} \tau_1 \exp(\mathfrak{g})_{conn} \simeq \mathbf{B}G_{conn} \end{displaymath} betweenn the 1-truncated coefficient object for $\mathfrak{g}$-valued $\infty$-connections and the coefficient objects for ordinary [[connections on a bundle]] (see there). \end{uprop} \begin{proof} Notice that the sheaves of [[object]]s on both sides are manifestly isomorphic, both are the sheaf of $\Omega^1(-,\mathfrak{g})$. On [[morphism]]s, we have by the \hyperlink{InfinitesimalGaugeTransformations}{above} for a form $\Omega^\bullet(U \times \Delta^1) \leftarrow W(\mathfrak{g}) : A$ decomposed into a horizontal and a verical pice as $A = A_U + \lambda \wedge d t$ that the condition $\iota_{\partial_t} F_A = 0$ is equivalent to the [[differential equation]] \begin{displaymath} \frac{\partial}{\partial s} A = d_U \lambda + [\lambda, A] \,. \end{displaymath} For any initial value $A(0)$ this has the unique solution \begin{displaymath} \begin{aligned} A(t) & = g(t)^{-1} (A + d_{U}) g(t) \\ & = Ad_{g(t)}(A) + g(t)^* \theta \end{aligned} \end{displaymath} (with $\theta$ the [[Maurer-Cartan form]] on $G$), where $g \in C^\infty([0,1], G)$ is the [[parallel transport]] of $\lambda$: \begin{displaymath} \begin{aligned} & \frac{\partial}{\partial s} \left( g_(t)^{-1} (A + d_{U}) g(t) \right) \\ & = g(t)^{-1} (A + d_{U}) \lambda g(t) - g(t)^{-1} \lambda (A + d_{U}) g(t) \end{aligned} \end{displaymath} (where for ease of notaton we write actions as if $G$ were a [[matrix Lie group]]). This implies that the endpoints of the path of $\mathfrak{g}$-valued 1-forms are related by the usual cocycle condition in $\mathbf{B}G_{conn}$ \begin{displaymath} A(1) = g(1)^{-1} (A + d_U) g(1) \,. \end{displaymath} In the same fashion one sees that given 2-cell in $\exp(\mathfrak{g})(U)$ and any 1-form on $U$ at one vertex, there is a unique lift to a 2-cell in $\exp(\mathfrak{g})_{conn}$, obtained by parallel transporting the form around. The claim then follows from the previous statement of [[Lie integration]] that $\tau_1 \exp(\mathfrak{g}) = \mathbf{B}G$. \end{proof} \hypertarget{further_examples}{}\subsubsection*{{Further examples}}\label{further_examples} \begin{itemize}% \item For $\mathfrak{g}$ [[Lie 2-algebra]], a $\mathfrak{g}$-valued differential form in the sense described here is precisely an [[Lie 2-algebra valued form]]. \item For $n \in \mathbb{N}$, a $b^{n-1}\mathbb{R}$-valued differential form is the same as an ordinary differential $n$-form. \item What is called an ``extended soft group manifold'' in the literature on the [[D'Auria-Fre formulation of supergravity]] is precisely a collection of $\infty$-Lie algebroid valued forms with values in a super $\infty$-Lie algebra such as the [[supergravity Lie 3-algebra]]/[[supergravity Lie 6-algebra]] (for 11-dimensional [[supergravity]]). The way [[curvature]] and [[Bianchi identity]] are read off from ``extded soft group manifolds'' in this literature is -- apart from this difference in terminology -- precisely what is described above. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[connection on a bundle]] \item [[connection on a 2-bundle]] / [[connection on a gerbe]] / [[connection on a bundle gerbe]] \item [[connection on a 3-bundle]] / [[connection on a bundle 2-gerbe]] \item \textbf{connection on an ∞-bundle} \begin{itemize}% \item [[flat ∞-connection]] \end{itemize} \item [[parallel transport]], [[higher parallel transport]] \item [[holonomy]] \end{itemize} [[!include higher Atiyah groupoid - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The local differential form data of $\infty$-connections was introduced in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{$L_\infty$-algebra connections} in Fauser (eds.) Recent Developments in QFT, Birkh\"a{}user () \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{Twisted differential String- and Fivebrane structures} (). \end{itemize} The global description was then introduced in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]] -- An $\infty$-Lie theoretic construction}, Advances in Theoretical and Mathematical Physics, Volume 16 Issue 1 (2012), pages 149-250 (\href{http://arxiv.org/abs/1011.4735}{arXiv:1011.4735}, \href{http://projecteuclid.org/euclid.atmp/1358950853}{Euclid}) \end{itemize} A more comprehensive account is in sections 3.9.6, 3.9.7 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} [[!redirects ∞-connection on a principal ∞-bundle]] [[!redirects ∞-connection on a principal ∞-bundle]] [[!redirects connection on a principal ∞-bundle]] [[!redirects connection on an ∞-bundle]] [[!redirects connections on an ∞-bundle]] [[!redirects connection on an infinity-bundle]] [[!redirects connections on ∞-bundles]] [[!redirects connections on infinity-bundles]] [[!redirects connection on a smooth principal ∞-bundle]] [[!redirects connections on smooth principal ∞-bundles]] [[!redirects connection on a principal infinity-bundle]] [[!redirects connections on smooth principal ∞-bundles]] [[!redirects ∞-connection]] [[!redirects ∞-connections]] [[!redirects principal ∞-connection]] [[!redirects principal ∞-connections]] [[!redirects principal infinity-connection]] [[!redirects principal ∞-connections]] [[!redirects principal infinity-connections]] [[!redirects connections on principal ∞-bundles]] \end{document}