\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{conserved current} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{via_the_variational_bicomplex}{Via the variational bicomplex}\dotfill \pageref*{via_the_variational_bicomplex} \linebreak \noindent\hyperlink{the_context}{The context}\dotfill \pageref*{the_context} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InHigherPrequantumGeometry}{In higher prequantum geometry}\dotfill \pageref*{InHigherPrequantumGeometry} \linebreak \noindent\hyperlink{context_2}{Context}\dotfill \pageref*{context_2} \linebreak \noindent\hyperlink{symmetries}{Symmetries}\dotfill \pageref*{symmetries} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{energymomentum_tensor}{Energy-momentum tensor}\dotfill \pageref*{energymomentum_tensor} \linebreak \noindent\hyperlink{dirac_current}{Dirac current}\dotfill \pageref*{dirac_current} \linebreak \noindent\hyperlink{of_greenschwarz_super_brane_sigma_models}{Of Green-Schwarz super $p$-brane sigma models}\dotfill \pageref*{of_greenschwarz_super_brane_sigma_models} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesDickeyBracket}{Dickey-Lie bracket on currents}\dotfill \pageref*{ReferencesDickeyBracket} \linebreak \noindent\hyperlink{in_variational_calculus}{In variational calculus}\dotfill \pageref*{in_variational_calculus} \linebreak \noindent\hyperlink{higher_conserved_currents}{Higher conserved currents}\dotfill \pageref*{higher_conserved_currents} \linebreak \noindent\hyperlink{in_higher_prequantum_theory}{In higher prequantum theory}\dotfill \pageref*{in_higher_prequantum_theory} \linebreak \hypertarget{via_the_variational_bicomplex}{}\subsection*{{Via the variational bicomplex}}\label{via_the_variational_bicomplex} The following discusses the formulation of conserved currents in terms of [[variational calculus]] and the [[variational bicomplex]]. \hypertarget{the_context}{}\subsubsection*{{The context}}\label{the_context} Let $X$ be a [[spacetime]] of [[dimension]] $n$, $E \to X$ a [[bundle]], $j_\infty E \to X$ its [[jet bundle]] and \begin{displaymath} \Omega^{\bullet,\bullet}(j_\infty E), (D = \delta + d) \end{displaymath} the corresponding [[variational bicomplex]] with $\delta$ being the vertical and $d = d_{dR}$ the horizontal [[differential]]. \begin{prop} \label{VariationOfTheLagrangian}\hypertarget{VariationOfTheLagrangian}{} For $L \in \Omega^{n,0}(j_\infty E)$ a [[Lagrangian]] we have that \begin{displaymath} \delta L = E(L) + d \Theta \end{displaymath} for $E$ the [[Euler-Lagrange equations|Euler-Lagrange operator]]. \end{prop} The [[covariant phase space]] of the Lagrangian is the locus \begin{displaymath} \{\phi \in \Gamma(E) | E(L)(j_\infty \phi) = 0\} \,. \end{displaymath} For $\Sigma \subset X$ any $(n-1)$-dimensional submanifold, \begin{displaymath} \delta \theta := \delta \int_\Sigma \Theta \end{displaymath} is the [[presymplectic structure]] on covariant phase space \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{conserved current} is an element \begin{displaymath} j \in \Omega^{n-1, 0}(j_\infty E) \end{displaymath} which is horizontally closed on [[covariant phase space]] \begin{displaymath} d j|_{E(L) = 0} = 0 \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} For $\Sigma \hookrightarrow X$ a submanifold of dimension $n-1$, the \textbf{[[charge]]} of the conserved current $j$ with respect to $\Sigma$ is the [[integral]] \begin{displaymath} Q_\Sigma := \int_\Sigma j \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} If $\Sigma, \Sigma' \subset X$ are homologous, the associated charge is the same \begin{displaymath} Q_{\Sigma} = Q_{\Sigma'} \,. \end{displaymath} \end{prop} \begin{proof} By [[Stokes' theorem]]. \end{proof} \begin{theorem} \label{}\hypertarget{}{} Every [[symmetry of the Lagrangian]] induces a conserved current. \end{theorem} This is [[Noether's theorem]]. See there for more details. \hypertarget{InHigherPrequantumGeometry}{}\subsection*{{In higher prequantum geometry}}\label{InHigherPrequantumGeometry} The following discusses conserved currents in the context of [[higher prequantum geometry]], closely related to \hyperlink{AzcarragaIzquierdo95}{Azcarraga-Izquierdo 95, section 8.1}. This follows (\hyperlink{classicalinhigher}{classicalinhigher, section 3.3.}, going back to \hyperlink{Schreiber13}{Schreiber 13}). Similar observations have been made by [[Igor Khavkine]]. \begin{quote}% this section needs much polishing. For the moment better see \hyperlink{classicalinhigher}{classicalinhigher, section 3.3} \end{quote} \hypertarget{context_2}{}\subsubsection*{{Context}}\label{context_2} Let $\mathbf{H}$ be the ambient [[(∞,1)-topos]]. For $\mathbf{Fields} \in \mathbf{H}$ a [[moduli ∞-stack]] of [[field (physics)|fields]] a [[local Lagrangian]] for an $n$-dimensional [[prequantum field theory]] is equivalently a [[prequantum n-bundle]] given by a map \begin{displaymath} \mathbf{L} \;\colon\; \mathbf{Fields} \longrightarrow \mathbf{B}^n U(1)_{conn} \end{displaymath} to the [[moduli ∞-stack]] of smooth [[circle n-bundles with connection]]. The local connection [[differential n-form]] is the [[local Lagrangian]] itself as in traditional literature, the rest of the data in $\mathcal{L}$ is the [[higher gauge theory|higher]] [[gauge symmetry]] [[equivariance|equivariant]] structure. The following is effectively the direct higher geometric analog of the \href{Noether's+theorem#HamiltonianNoetherTheorem}{Hamiltonian version of Noether's theorem}. \hypertarget{symmetries}{}\subsubsection*{{Symmetries}}\label{symmetries} A transformation of the [[field (physics)|fields]] is an [[equivalence]] \begin{displaymath} \mathbf{Fields} \underoverset{\simeq}{\phi}{\longrightarrow} \mathbf{Fields} \,. \end{displaymath} That the [[local Lagrangian]] $\mathcal{L}$ be preserved by this, up to ([[gauge symmetry|gauge]]) equivalence, means that there is a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ \mathbf{Fields} &&\underoverset{\simeq}{\phi}{\longrightarrow}&& \mathbf{Fields} \\ & {}_{\mathllap{\mathbf{L}}}\searrow &\swArrow^\simeq_\alpha& \swarrow_{\mathrlap{\mathbf{L}}} \\ && \mathbf{B}^n U(1)_{conn} } \,. \end{displaymath} (With $\mathbf{L}$ equivalently regarded as [[prequantum n-bundle]] this is equivalently a \href{quantomorphism%20group#InHigherGeometry}{higher quantomorphism}. These are the transformations studied in (\hyperlink{FiorenzaRogersSchreiber13}{Fiorenza-Rogers-Schreiber 13})) For $\phi$ an [[infinitesimal object|infinitesimal]] operation an $L$ locally the Lagrangian $n$-form, this means that the [[Lie derivative]] $\mathcal{L}_{\delta \phi}$ of $L$ has a potential, \begin{displaymath} \mathcal{L}_{\delta \phi} L = \mathbf{d} \alpha \end{displaymath} hence that the Lagrangian changes under the [[Lie derivative]] by an exact term, hence by a [[divergence]] on the [[worldvolume]] (since the degree of the Lagrangian form is the [[dimension]] of the worldvolume). This defines an \emph{[[infinitesimal symmetry of the Lagrangian]]}. See also (\hyperlink{AzcarragaIzquierdo95}{Azcarraga-Izquierdo 95 (8.1.13)}). This is the situation of the [[Noether theorem]] for the general case of ``weak'' symmetries (see at \href{Noether+theorem#WeakSymmetrySchematicIdea}{Noether theorem -- schematic idea -- weak symmetries}). By [[Cartan's magic formula]] the above means \begin{displaymath} \mathbf{d}\left( \alpha - \iota_{\delta\phi} \mathbf{L} \right) = \iota_{\delta \phi} \omega \,. \end{displaymath} and hence the combination $j \coloneqq \alpha - \iota_{\delta\phi} \mathbf{L}$ (a \emph{[[Hamiltonian form]]} for $\delta \phi$ with respect to $\omega$) is conserved on trajectories in the kernel of the [[n-plectic form]] $\omega$ (which are indeed the classical trajectories of $\mathbf{L}$, see (\hyperlink{AzcarragaIzquierdo95}{Azcarraga-Izquierdo 95 (8.1.14)})). This is the first stage in the [[Poisson bracket Lie n-algebra]], the \emph{[[current algebra]]} (see there at \emph{\href{current%20algebra#AsAHomotopyLieAlgebra}{As a homotopy Lie algebra}}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{energymomentum_tensor}{}\subsubsection*{{Energy-momentum tensor}}\label{energymomentum_tensor} \begin{itemize}% \item [[energy-momentum tensor]] -- see at \emph{[[geometry of physics -- A first idea of quantum field theory]]} \href{geometry+of+physics+--+A+first+idea+of+quantum+field+theory#ScalarFieldEnergyMomentum}{this example} \end{itemize} \hypertarget{dirac_current}{}\subsubsection*{{Dirac current}}\label{dirac_current} \begin{itemize}% \item [[Dirac current]] -- see at [[geometry of physics -- A first idea of quantum field theory]] \href{geometry+of+physics+--+A+first+idea+of+quantum+field+theory#DiracCurrent}{this example} \end{itemize} \hypertarget{of_greenschwarz_super_brane_sigma_models}{}\subsubsection*{{Of Green-Schwarz super $p$-brane sigma models}}\label{of_greenschwarz_super_brane_sigma_models} The WZW term of the [[Green-Schwarz super p-brane sigma models]] is invariant under [[supersymmetry]] only up to a [[divergence]], hence here the general [[Noether theorem]] for ``weak'' symmetries applies and yields a current algebra which is an \href{super+Poincare+Lie+algebra#PolyvectorExtensions}{polyvector extension} of the [[supersymmetry]] algebra. See at \emph{\href{Green-Schwarz+action+functional#ConservedCurrents}{Green-Schwarz action functional -- Conserved currents}} for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[conservation law]] \item [[current algebra]] \item [[chiral anomaly]] \item [[classical observable]] \item [[Noether theorem]] \item [[charge]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesDickeyBracket}{}\subsubsection*{{Dickey-Lie bracket on currents}}\label{ReferencesDickeyBracket} The [[Dickey Lie bracket]] on conserved currents is due to \begin{itemize}% \item [[Leonid Dickey]], \emph{Soliton equations and Hamiltonian systems}, Advanced Series in Mathematical Physics, Vol. 12 (World Scientific 1991). \end{itemize} and is reviewed in \begin{itemize}% \item [[Glenn Barnich]], [[Marc Henneaux]], section 3 of \emph{Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket}, Journal of Mathematical Physics 37, 5273-5296 (1996) (\href{http://arxiv.org/abs/hep-th/9601124}{arXiv:hep-th/9601124}, \href{http://dx.doi.org/10.1063/1.531726}{DOI 10.1063/1.531726}) \end{itemize} The statement that the Dickey bracket Lie algebra of currents is a central [[Lie algebra extension]] of the algebra of symmetries by [[de Rham cohomology]] of the jet bundle appears as theorem 11.2 in (Part II of) \begin{itemize}% \item [[Alexandre Vinogradov]], \emph{The $\mathcal{C}$-spectral sequence, Lagrangian formalism, and conservation laws. I. the linear theory}, Journal of Mathematical Analysis and Applications \textbf{100}, 1-40 (1984) (\href{http://dx.doi.org/10.1016/0022-247x(84}{doi}90071-4)) \item [[Alexandre Vinogradov]], \emph{The $\mathcal{C}$-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory}, Journal of Mathematical Analysis and Applications \textbf{100}, Issue 1, 30 April 1984, Pages 41-129 (\href{http://www.sciencedirect.com/science/article/pii/0022247X84900726}{publisher}) \end{itemize} and is stated as exercise 2.28 on p. 203 of \begin{itemize}% \item [[Alexandre Vinogradov]], [[Joseph Krasil'shchik]] (eds.), \emph{Symmetries and conservation laws for differential equations of mathematical physics}, vol. 182 of Translations of Mathematical Monographs, AMS (1999) \end{itemize} A lift of the Dickey Lie bracket on cohomologically trivial spaces to an equivalent \emph{[[model structure for L-infinity algebras|L-infinity equivalent]]} [[L-infinity algebra|L-infinity bracket]] is constructed, under some assumptions, in \begin{itemize}% \item [[Glenn Barnich]], [[Ronald Fulp]], [[Tom Lada]], [[Jim Stasheff]], \emph{The sh Lie structure of Poisson brackets in field theory}, Communications in Mathematical Physics 191, 585-601 (1998) (\href{http://arxiv.org/abs/hep-th/9702176}{arXiv:hep-th/9702176}) \item [[Martin Markl]], [[Steve Shnider]], \emph{Differential Operator Endomorphisms of an Euler-Lagrange Complex}, Contemporary Mathematics, Volume 231, 1999 (\href{http://arxiv.org/abs/math/9808105}{arXiv:9808105}) \end{itemize} The cohomologically non-trivial lift is discussed in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Lie n-algebras of BPS charges]]}, J. High Energ. Phys. (2017) 2017: 87 (\href{http://arxiv.org/abs/1507.08692}{arXiv:1507.08692}) \end{itemize} \hypertarget{in_variational_calculus}{}\subsubsection*{{In variational calculus}}\label{in_variational_calculus} A general discussion as above is around definition 9 of \begin{itemize}% \item [[Gregg Zuckerman|G. J. Zuckerman]], \emph{Action Principles and Global Geometry} , in Mathematical Aspects of String Theory, S. T. Yau (Ed.), World Scientific, Singapore, 1987, pp. 259--284. ([[ZuckermanVariation.pdf:file]]) \end{itemize} The relation of conserved currents to [[moment maps]] in [[symplectic geometry]] is highlighted for instance in \begin{itemize}% \item Huijun Fan, \emph{Lecture 8, Moment map and symplectic reduction} (\href{http://www.math.pku.edu.cn/teachers/fanhj/courses/symp-8.pdf}{pdf}) \end{itemize} \hypertarget{higher_conserved_currents}{}\subsubsection*{{Higher conserved currents}}\label{higher_conserved_currents} Higher conserved currents are discussed for instance in \begin{itemize}% \item [[Glenn Barnich]], [[Friedemann Brandt]], \emph{Covariant theory of asymptotic symmetries, conservation laws and central charges}, Nucl.Phys.B633:3-82, 2002 (\href{http://arxiv.org/abs/hep-th/0111246}{arXiv:hep-th/0111246}) \end{itemize} \hypertarget{in_higher_prequantum_theory}{}\subsubsection*{{In higher prequantum theory}}\label{in_higher_prequantum_theory} Conserved currents for Lagrangians written as [[WZW terms]] are discussed in \begin{itemize}% \item [[José de Azcárraga]], Jos\'e{} M. Izquierdo, section 8.1 of \emph{[[Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics]]} , Cambridge monographs of mathematical physics, (1995) \end{itemize} Building on that, in the context of [[higher prequantum geometry]] conserved currents of the [[WZW model]] and in [[schreiber:∞-Wess-Zumino-Witten theory]] are briefly indicated on the last page of \begin{itemize}% \item [[Urs Schreiber]], \emph{Higher geometric prequantum theory and The Brane Bouquet}, notes for a [[schreiber:The brane bouquet|talk]] at \href{http://hep.itp.tuwien.ac.at/~miw/bzell2013/}{Bayrischzell 2013} (\href{http://ncatlab.org/schreiber/files/hpqWZWintro.pdf}{pdf notes}) \item [[Urs Schreiber]], \emph{[[schreiber:Classical field theory via Cohesive homotopy types]]} \end{itemize} The same structure is considered in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]}, 2013 \end{itemize} as higher [[quantomorphisms]] and [[Poisson bracket Lie n-algebras]] of local currents. category: physics [[!redirects conserved current]] [[!redirects conserved currents]] [[!redirects local current]] [[!redirects local currents]] [[!redirects Noether current]] [[!redirects Noether currents]] [[!redirects Noether current algebra]] [[!redirects Noether current algebras]] \end{document}