\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{context-free grammar} \hypertarget{contextfree_grammar}{}\section*{{Context-free grammar}}\label{contextfree_grammar} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{early_sources}{Early sources}\dotfill \pageref*{early_sources} \linebreak \noindent\hyperlink{modern_literature}{Modern literature}\dotfill \pageref*{modern_literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of context-free grammar, now used in [[linguistics]], [[computer science]] and [[mathematics]], was introduced in the works of [[Noam Chomsky]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We write $X + Y$ for the [[disjoint union]] of two sets and use vector notation and the Kleene star $\vec{v} \in X^\star$ to denote sequences in the [[free monoid]]. A context-free grammar is a tuple $(\Sigma, X, R, s)$ where $\Sigma$ and $X$ are finite sets called the \emph{vocabulary} (also called the \emph{terminals}) and the \emph{non-terminals} respectively, $R \subseteq X \times (X + \Sigma)^\star$ is a finite set of \emph{production rules} and $s \in X$ is called the \emph{start symbol}. The \emph{language} of a context-free grammar is given by $L(G) = \{ \vec{u} \in V^\star \vert s \to_R \vec{u} \}$ where the rewriting relation $(\to_R) \subseteq (V + X)^\star \times (V + X)^\star$ is traditionally defined as the transitive closure of the following directed graph: \begin{displaymath} \big\{ (\vec{u} x \vec{w}, \vec{u v w}) \quad \vert \quad \vec{u}, \vec{w} \in (V + X)^\star, (x, \vec{v}) \in R \big\} \end{displaymath} One may redefine $L(G) = \big\{ \vec{u} \in \Sigma^\star \vert \C_G(s, \vec{u}) \neq \emptyset \big\}$ where $C_G$ is the free [[monoidal category]] with: \begin{itemize}% \item generating objects the [[disjoint union]] $\Sigma + X$, \item generating arrows the production rules $(x, \vec{v}) \in R$ with $dom(x, \vec{v}) = x$ and $cod(x, \vec{v}) = \vec{v}$. \end{itemize} That is, a string $\vec{u} \in \Sigma^\star$ is \emph{grammatical} whenever there exists an arrow from the start symbol $s$ to $\vec{u}$ in $C_G$. Arrows in $C_G$ may be encoded as a \emph{syntax tree}, seen as a special case of a [[string diagram]], e.g.: Note that context-free grammar is weakly equivalent to [[Lambek|Lambek's]] [[pregroup grammar]] i.e. they generate the same class of languages, see: \begin{itemize}% \item Wojciech Buszkowski, Katarzyna Moroz, \emph{Pregroup Grammars and Context-free Grammars}, Computational Algebraic Approaches to Natural Language, Polimetrica (2008) (\href{https://pdfs.semanticscholar.org/1924/30f2252b6e0a7f982a3ae69a3ccf9c2981c0.pdf}{pdf}) \end{itemize} \hypertarget{early_sources}{}\subsection*{{Early sources}}\label{early_sources} Here is list of some of the original references in English and also of their Russian translations. \begin{itemize}% \item N. Chomsky, \emph{Three models for the description of language, I. R. E. Trans. PGIT 2 (1956), 113---124. ( : ., , , . 2, 1961, 237-266)} \item N. Chomsky, \emph{On certain formal properties of grammars}, Information and Control \textbf{2} (1959), 137---267; \emph{A note on phrase structure grammars}, Information andControl \textbf{2} 1959\_, 393---395. ( , o . , . 5, , 1962, 312---315.) \item N. Chomsky, \emph{On the notion \guillemotleft{}Rule of Grammar\guillemotright{}}, Proc. Symp. Applied Math., 12. Amer. Math. Soc. (1961). ( ., \guillemotleft{} \guillemotright{}, . , . 4, \guillemotleft{}\guillemotright{}, 1965, . 34---65.) \item N. Chomsky, \emph{Context-free grammars and pushdown storage}, Quarterly Progress Reports, 65, Research Laboratory of Electronics, M. I. T., 1962. \item N. Chomsky, \emph{Formal properties of grammars}, in Handbook of Mathemati- Mathematical Psychology, 2, ch. 12, Wiley, 1963, p. 323---418. ( ., , , . 2, \guillemotleft{}\guillemotright{}, 1966, 121----230.) \item N. Chomsky, The logical basis for linguistic theory, Proc. IX-th Int. Cong. Linguists (1962). ( `` , . , . 4, \guillemotleft{}\guillemotright{}, 1965, 465----575.) \item N. hmsk, G. A. Miller G. A.. Finite state languages, Information and Control \textbf{1} (1958), 91----112. ( ., ., , , . 4, , 1962, 231----255.), \emph{Introduction to the formal analysis of natural languages}. Handbook of Mathematical Psychology \textbf{2}, Ch. 12, Wiley, 1963, 269----322 ( , , . 1, \guillemotleft{}\guillemotright{}, 1965, . 229----290.) \item N. Chomsky, M. P. Sch\"u{}tzenberger, \emph{The algebraic theory of context-free languages}, in: Computer programming and formal systems, 118--161 North-Holland 1963, Amsterdam \href{http://www.ams.org/mathscinet-getitem?mr=152391}{MR152391} ( \textbf{3}, 195--242, 1966) \end{itemize} \hypertarget{modern_literature}{}\subsection*{{Modern literature}}\label{modern_literature} \begin{itemize}% \item wikipedia: \href{http://en.wikipedia.org/wiki/Context-free_language}{context-free language} \item A. V. Aho, J. D. Ullman, \emph{The theory of parsing, translation, and compiling}, vol 1, Parsing; vol. 2, Compiling. Prentice Hall, 1972. \item A. V. Aho, J. D. Ullman, \emph{Principles of compiler design}, Addison-Wesley, 1977. \end{itemize} Some chapters in ``Handbook of formal language theory'' (3 vols.), G. Rozenberg, A. Salomaa (eds.), Springer 1997: \begin{itemize}% \item Jean-Michel Autebert, Jean Berstel, Luc Boasson, \emph{Context-free languages and push-down automata}, vol. 1, ch. 3 \end{itemize} [[!redirects context-free grammar]] [[!redirects context-free grammars]] [[!redirects context free grammar]] [[!redirects context free grammars]] [[!redirects context-free language]] [[!redirects context-free languages]] [[!redirects context free language]] [[!redirects context free languages]] \end{document}