\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{continuous map} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{continuous_maps}{}\section*{{Continuous maps}}\label{continuous_maps} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{EpsilonticDefinition}{The epsilontic definition for metric spaces}\dotfill \pageref*{EpsilonticDefinition} \linebreak \noindent\hyperlink{for_topological_spaces}{For topological spaces}\dotfill \pageref*{for_topological_spaces} \linebreak \noindent\hyperlink{further_variants}{Further variants}\dotfill \pageref*{further_variants} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{properties_preserved}{Properties preserved}\dotfill \pageref*{properties_preserved} \linebreak \noindent\hyperlink{special_maps}{Special maps}\dotfill \pageref*{special_maps} \linebreak \noindent\hyperlink{special_cases_in_specific_contexts}{Special cases in specific contexts}\dotfill \pageref*{special_cases_in_specific_contexts} \linebreak \noindent\hyperlink{in_constructive_mathematics}{In constructive mathematics}\dotfill \pageref*{in_constructive_mathematics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[function]] $f \colon X \to Y$ is called \emph{continuous} if its values $f(x)$ do not ``jump'' with variation of its argument $x$, unless $x$ itself ``jumps''. Roughly speaking, if $x_1 \approx x_2$, then $f(x_1) \approx f(x_2)$. (This can be made into a precise definition in [[nonstandard analysis]] if care is taken about the domains of these variables.) In order to make this precise (in standard analysis) one needs some concept of [[neighbourhoods]] of elements of $X$ and $Y$. For instance if $X$ and $Y$ carry structure of [[metric spaces]], then one may say that $f$ is continuous if for every point $x \in X$ and for every small [[open ball]] around its image $f(x)$ in $Y$, there exists a sufficiently small open ball around $x \in X$ which is still mapped by $f$ into that target open ball. This definition turns out to have more elegant formulation that needs to mention neither the points of $x$ nor the radii of open balls around points: the [[metric]] induces a concept of [[open subsets]] and $f$ is continuous precisely if [[preimages]] under $f$ of [[open subsets]] in $Y$ are still open subsets in $X$. This then is the general definition of continuity of a function $f$ between [[topological spaces]]: A function between [[topological spaces]] is \emph{continuous} precisely if its [[preimages]] of [[open subsets]] are again open subsets. Continuous maps are the [[homomorphisms]] between [[topological spaces]]. In other words, the collection of [[topological spaces]] forms a [[category]], often denoted \emph{[[Top]]}, whose [[morphisms]] are the continuous functions. Further generalization of the concept of continuity exists, for instance to \emph{[[locales]]} (and then to [[toposes]]) or to \emph{[[convergence spaces]]}. (See also at \emph{[[continuous space]]}.) \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{EpsilonticDefinition}{}\subsubsection*{{The epsilontic definition for metric spaces}}\label{EpsilonticDefinition} We state the definition of continuity in terms of [[epsilontic analysis]], definition \ref{EpsilonDeltaDefinitionOfContinuity} below. First recall the relevant concepts: \begin{defn} \label{MetricSpace}\hypertarget{MetricSpace}{} A \emph{[[metric space]]} is \begin{enumerate}% \item a [[set]] $X$ (the ``underlying set''); \item a [[function]] $d \;\colon\; X \times X \to [0,\infty)$ (the ``distance function'') from the [[Cartesian product]] of the set with itself to the [[nonnegative number|non-negative]] [[real numbers]] \end{enumerate} such that for all $x,y,z \in X$: \begin{enumerate}% \item $d(x,y) = 0 \;\Leftrightarrow\; x = y$ \item (symmetry) $d(x,y) = d(y,x)$ \item ([[triangle inequality]]) $d(x,y)+ d(y,z) \geq d(x,z)$. \end{enumerate} \end{defn} \begin{example} \label{}\hypertarget{}{} Every [[normed vector space]] $(V, {\Vert -\Vert})$ becomes a [[metric space]] according to def. \ref{MetricSpace} by setting \begin{displaymath} d(x,y) \coloneqq {\Vert x-y\Vert} \,. \end{displaymath} \end{example} \begin{defn} \label{OpenBalls}\hypertarget{OpenBalls}{} Let $(X,d)$, be a [[metric space]]. Then for every element $x \in X$ and every $\epsilon \in \mathbb{R}_+$ a [[positive number|positive]] [[real number]], write \begin{displaymath} B^\circ_x(\epsilon) \;\coloneqq\; \left\{ y \in X \;\vert\; d(x,y) \lt \epsilon \right\} \end{displaymath} for the [[open ball]] of [[radius]] $\epsilon$ around $x$. \end{defn} \begin{defn} \label{EpsilonDeltaDefinitionOfContinuity}\hypertarget{EpsilonDeltaDefinitionOfContinuity}{} \textbf{(epsilontic definition of continuity)} For $(X,d_X)$ and $(Y,d_Y)$ two [[metric spaces]] (def. \ref{MetricSpace}), then a [[function]] \begin{displaymath} f \;\colon\; X \longrightarrow Y \end{displaymath} is said to be \emph{continuous at a point $x \in X$} if for every $\epsilon \gt 0$ there exists $\delta\gt 0$ such that \begin{displaymath} d_X(x,y) \lt \delta \;\Rightarrow\; d_Y(f(x), f(y)) \lt \epsilon \end{displaymath} or equivalently such that \begin{displaymath} f(B_x^\circ(\delta)) \subset B^\circ_{f(x)}(\epsilon) \end{displaymath} where $B^\circ$ denotes the [[open ball]] (definition \ref{OpenBalls}). The function $f$ is called just \emph{continuous} if it is continuous at every point $x \in X$. \end{defn} This definition is equivalent to a more abstract one, which does not explicitly refer to points or radii anymore: \begin{defn} \label{OpenSubsetsOfAMetricSpace}\hypertarget{OpenSubsetsOfAMetricSpace}{} Let $(X,d)$ be a [[metric space]] (def. \ref{MetricSpace}). Say that \begin{enumerate}% \item A \emph{[[neighbourhood]]} of a point $x \in X$ is a [[subset]] $x \in U \subset X$ which contains some [[open ball]] $B_x^\circ(\epsilon)$ around $x$ (def. \ref{OpenBalls}). \item An \emph{[[open subset]]} of $X$ is a [[subset]] $U \subset X$ such that for every for $x \in U$ it also contains a [[neighbourhood]] of $x$. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} The collection of open subsets in def. \ref{OpenSubsetsOfAMetricSpace} constitutes a \emph{[[topological space|topology]]} on the set $X$, making it a \emph{[[topological space]]}. This is called the \emph{[[metric topology]]}. Stated more concisely: the [[open balls]] in a metric space constitute the [[basis of a topology]] for the [[metric topology]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} A [[function]] $f \colon X \to Y$ between [[metric spaces]] (def. \ref{MetricSpace}) is continuous in the [[epsilontic analysis|epsilontic]] sense of def. \ref{EpsilonDeltaDefinitionOfContinuity} precisely if it has the property that its [[pre-images]] of [[open subsets]] of $Y$ (in the sense of def. \ref{OpenSubsetsOfAMetricSpace}) are open subsets of $X$. \end{prop} \begin{proof} First assume that $f$ is continuous in the epsilontic sense. Then for $O_Y \subset Y$ any [[open subset]] and $x \in f^{-1(O_Y)}$ any point in the pre-image, we need to show that there exists a [[neighbourhood]] of $x$ in $U$. But by assumption there exists an [[open ball]] $B_x^\circ(\epsilon)$ with $f(B_X^\circ(\epsilon)) \subset O_Y$. Since this is true for all $x$, by definition this means that $f^{-1}(O_Y)$ is open in $X$. Conversely, assume that $f^{-1}$ takes open subsets to open subsets. Then for every $x \in X$ and $B_{f(x)}^\circ(\epsilon)$ an [[open ball]] around its image, we need to produce an open ball $B_x^\circ(\delta)$ in its pre-image. But by assumption $f^{-1}(B_{f(x)}^\circ(\epsilon))$ contains a [[neighbourhood]] of $x$ which by definition means that it contains such an open ball around $x$. \end{proof} \hypertarget{for_topological_spaces}{}\subsubsection*{{For topological spaces}}\label{for_topological_spaces} \begin{defn} \label{topological}\hypertarget{topological}{} A [[function]] $f \;\colon\; X\to Y$ between [[topological spaces]] is a \textbf{continuous map} (or is said to be \emph{continuous}) if for every [[open subset]] $U \subset Y$, the [[preimage]] $f^{-1}(U)$ is an open subset $X$. \end{defn} In [[nonstandard analysis]], this is equivalent to \begin{defn} \label{nonstandard}\hypertarget{nonstandard}{} A [[function]] $f \;\colon\; X\to Y$ between [[topological spaces]] is a \textbf{continuous map} (or is said to be \emph{continuous}) if for every [[standard point]] $x_1$ and every [[hyperpoint]] $x_2$, if $x_1$ and $x_2$ are [[adequality|adequal]] (infinitely close, or in other words if $x_2$ is in the [[halo]] of $x_1$), then $f(x_1)$ and $\multiscripts{^*}f{}(x_2)$ are adequal (where $\multiscripts{^*}f{}$ is the [[nonstandard extension]] of $f$). Equivalently, $f$ is continuous iff $\multiscripts{^*}f{}$ is [[microcontinuous function|microcontinuous]]. \end{defn} \hypertarget{further_variants}{}\subsubsection*{{Further variants}}\label{further_variants} A function $f$ between [[convergence spaces]] is \textbf{continuous} if for any [[filter]] $F$ such that $F \to x$, it follows that $f(F) \to f(x)$, where $f(F)$ is the filter generated by the filterbase $\{F(A) \;|\; A \in F\}$. A \textbf{continuous map} between [[locales]] is simply a [[frame]] [[homomorphism]] in the opposite direction. Equivalently (via the [[adjoint functor theorem]]), it may be defined as a homomorphism of [[inflattices]] whose [[left adjoint]] preserves finitary [[meets]] (and hence is a frame homomorphism). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Since continuity is defined in terms of \emph{preservation of property} (namely preserving ``openness'' under preimages), it is natural to ask what other properties they preserve.\newline Also, when a property is not always preserved it is useful to label those maps which do preserve it for closer study. \hypertarget{properties_preserved}{}\subsubsection*{{Properties preserved}}\label{properties_preserved} \begin{enumerate}% \item By definition, the preimage of an open set is open. \item Similarly, the preimage of an [[closed set]] is closed. \item The [[image]] of a [[connected space|connected subset]] is again connected. \item The image of a [[compact space|compact subset]] is again compact (see at \emph{[[continuous images of compact subsets are compact]]}) \end{enumerate} \hypertarget{special_maps}{}\subsubsection*{{Special maps}}\label{special_maps} \begin{enumerate}% \item The preimage of a compact set need not be compact; a continuous map for which this is true is known as a \textbf{[[proper map]]}. \item The image of an open set need not be open; a continuous map for which this is true is said to be an \textbf{[[open map]]}. (Technically, an open map is any [[function]] with just this property.) \item The image of an closed set need not be closed; a continuous map for which this is true is said to be an \textbf{[[closed map]]}. (Technically, a closed map is any function with just this property.) \item A continuous map of topological spaces which is invertible as a function of sets is a \textbf{[[homeomorphism]]} if the [[inverse function]] is a continuous map as well. \end{enumerate} \hypertarget{special_cases_in_specific_contexts}{}\subsubsection*{{Special cases in specific contexts}}\label{special_cases_in_specific_contexts} Although these don't make sense for arbitrary topological spaces (convergence spaces, locales, etc), they are special kinds of continuous maps in contexts such as [[metric spaces]]: \begin{itemize}% \item [[uniformly continuous maps]], \item [[Lipschitz maps]], \item [[short maps]], \item [[differentiable maps]], \item [[smooth maps]]. \end{itemize} \hypertarget{in_constructive_mathematics}{}\subsection*{{In constructive mathematics}}\label{in_constructive_mathematics} Various notions of continuous function are used in [[constructive mathematics]]. A function $f$ (say [[real number|real]]-valued and defined on a real [[interval]]) is: \begin{itemize}% \item \emph{pointwise-continuous} if it continuous in the usual [[epsilon-delta]] (or equivalently [[open-subset]]) sense; \item \emph{uniformly continuous} if it [[uniformly continuous map|uniformly continuous]] in the usual epsilon-delta (or equivalently [[entourage]]-theoretic) sense; \item \emph{Bishop-continuous} if it is pointwise continuous and furthermore, the restriction to any closed and bounded interval is uniformly continuous; \item \emph{Bridges-continuous} if \ldots{} (this one's kind of complicated). \end{itemize} In [[classical mathematics]], these are all equivalent when the domain is itself a closed and bounded interval, and all of them except for uniform continuity are equivalent in general. The same equivalences hold in [[intuitionistic mathematics]], thanks to the [[fan theorem]]. But no two of these are equivalent in [[Russian constructivism]]. In fact, assuming that $\mathbb{R}$ is defined as the set of located [[Dedekind cuts]], there is the following negative result by [[Frank Waaldijk]] (\hyperlink{Waaldijk2003}{Waaldijk2003}): Without the [[fan theorem]], there is no notion of continuity for set-theoretic functions in [[constructive mathematics]], spelled ``kontinuity'' in the following, such that all of the following desiderata are met: \begin{itemize}% \item A function $[0,1] \to \mathbb{R}$ is kontinuous if and only if it is [[uniformly continuous]] in the usual sense. \item The composition of kontinuous functions is kontinuous. \item The function $\mathbb{R}^+ \to \mathbb{R}, x \mapsto 1/x$ is kontinuous. \end{itemize} The key problem is that a uniformly continuous, [[positive number|positive]]-valued function defined on $[0,1]$ might fail to be bounded below by a positive number, since the interval $[0,1]$ might fail to be [[compact space|compact]], yet its reciprocal (if also uniformly continuous) must be bounded above. Waaldijk's negative result can be circumvented by dropping the insistence on points and instead working with maps between [[locales]], [[toposes]], or formal spaces as studied in [[formal topology]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[degree of a continuous function]] \item [[equicontinuous family of functions]] \item [[analytic function]] \item [[differentiable function]] \item [[smooth function]] \item [[convex function]] \item [[integrable function]], [[square-integrable function]] \item [[bounded function]] \item [[compactly supported function]] \item [[measurable function]] \item [[rapidly decreasing function]] \item [[function with rapidly decreasing partial derivatives]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Frank Waaldijk]], \emph{On the foundations of constructive mathematics -- especially in relation to the theory of continuous functions}, 2003 (\href{http://www.fwaaldijk.nl/foundations%20of%20constructive%20mathematics.pdf}{pdf}) \end{itemize} [[!redirects continuous map]] [[!redirects continuous maps]] [[!redirects continuous function]] [[!redirects continuous functions]] [[!redirects continuity]] \end{document}