\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{continuum hypothesis} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{the_continuum_hypothesis}{}\section*{{The Continuum Hypothesis}}\label{the_continuum_hypothesis} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{unprovability}{Unprovability}\dotfill \pageref*{unprovability} \linebreak \noindent\hyperlink{unrefutability}{Unrefutability}\dotfill \pageref*{unrefutability} \linebreak \noindent\hyperlink{EastonTheorem}{Generalization: Easton's theorem}\dotfill \pageref*{EastonTheorem} \linebreak \noindent\hyperlink{links}{Links}\dotfill \pageref*{links} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \begin{quote}% Cantor's continuum problem is simply the question: How many points are there on a straight line in Euclidean space? In other terms, the question is: How many different sets of integers do there exist? K. G\"o{}del (\hyperlink{Goedel47}{1947}, p.515) \end{quote} The \textbf{continuum hypothesis} is a famous problem of [[set theory]] concerning the cardinality of the~[[real numbers]] (the ``[[continuum]]''). The hypothesis in its classical form goes back to [[Georg Cantor|G. Cantor]] and was on top of [[Hilbert's problems|Hilbert's millenium list]] of open problems in mathematics in 1900. In concise form the continuum hypothesis ($CH$) reads: $\quad 2^{\aleph_0}=\aleph _1\quad$; which roughly says that every [[subset]] of the [[real numbers]] is either [[countable set|countable]] or has the same [[cardinality]] as the set of all real numbers. The \emph{generalized continuum hypothesis} ($GCH$) states more generally: $\quad 2^{\aleph_k}=\aleph _{k+1}\quad$. (But see also Remark \ref{GCHinZF} below.) The \textbf{independence of the continuum hypothesis} from the [[ZFC]] axioms of set theory has been established in landmark papers by [[Kurt Gödel|K. Gödel]] and [[Paul J. Cohen|P. J. Cohen]], the former proving the consistency of $ZFC+CH$ relative to $ZFC$ in 1938, and the latter proving the consistency of $ZFC+\neg CH$ relative to $ZFC$ in 1963. For fully [[formal proof]] see \hyperlink{Han18}{Han 18}. The broader implications of the independence results for set theory in general and $ZFC$ in particular are somewhat controversial. They are widely taken as a pointer towards the deficiency of $ZFC$ and the need for \emph{new axioms} of set theory. This position has been voiced famously in \hyperlink{Goedel47}{G\"o{}del (1947)} from a [[platonism|platonist perspective]]. [[William Lawvere|W. Lawvere]] in \hyperlink{Lawvere03}{2003} interpreted Cantor's original point of view as saying that $CH$ holds for `sufficiently structureless' sets and, accordingly, viewed G\"o{}del's 1938 result as a proof of $CH$, whereas in [[Patrick Dehornoy|P. Dehornoy]]`s 2003 reinterpretation based on work of \emph{Woodin}, $CH$ is actually conjectured to be false. [[Solomon Feferman|S. Feferman]] has argued more recently that $CH$ is essentially \emph{mathematically indefinite} and has made notions of `indefiniteness' explicit that indeed enable to back this point of view with technical results (cf. \hyperlink{Feferman11}{Feferman (2011)}). Similarly, [[Joel David Hamkins]] has argued (cf. \hyperlink{Hamkins12}{Hamkins 2012}) that under the [[set-theoretic multiverse|multiverse]] view of set theory, $CH$ is settled by our extensive knowledge of models of set theory satisfying both $CH$ and $\neg CH$ which all seem fully set-theoretic, so that no principle implying either one can possibly be considered `obviously true'. The attempt to give categorical accounts of the [[forcing]] methods introduced by Cohen provided a strong impetus in the development of (elementary) [[topos theory]] in the work of [[Peter Freyd|Freyd]], [[Miles Tierney|Tierney]], Lawvere and later Scedrov. The following exposition follows this categorical approach. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{defn} \label{}\hypertarget{}{} Let $E$ be an [[elementary topos]] with [[subobject classifier]] $\Omega$ and [[natural numbers object]] $N$. The (external) \textbf{continuum hypothesis} in $E$ asserts that if there is a sequence of [[monomorphisms]] \begin{displaymath} N \hookrightarrow B\hookrightarrow \Omega^N \end{displaymath} then either the first or the second is an [[isomorphism]]. In the classical case (that is, in the topos [[Set]] with the [[axiom of choice]]), this equivalently asserts that there is no strict inequality of [[cardinal numbers]] \begin{displaymath} {|\mathbb{N}|} \lt \alpha\lt {|\Omega^\mathbb{N}|} \end{displaymath} which it is more common to write as \begin{displaymath} \aleph_0 \lt \alpha \lt 2^{\aleph_0} \end{displaymath} \end{defn} \hypertarget{unprovability}{}\subsection*{{Unprovability}}\label{unprovability} \begin{theorem} \label{}\hypertarget{}{} There exists a [[boolean topos]] in which the [[axiom of choice]] holds and the continuum hypothesis fails. \end{theorem} One topos for which the theorem holds is called the \emph{Cohen topos}; it is the topos of sheaves with respect to the [[dense topology]] (also called the $\neg\neg$-topology) on the Cohen [[poset]]. Thus, in this topos, there exist monomorphisms $\mathbb{N} \hookrightarrow B\hookrightarrow 2^{\mathbb{N}}$ that are both not isomorphisms. The Cohen topos will be constructed from the topos [[Set]] of sets. For this, recall that the subobject classifier of $Set$ is $2\coloneqq \{0,1\}$. The technique of constructing such a topos is called [[forcing]]. \begin{defn} \label{}\hypertarget{}{} \textbf{(Cohen poset)} Let $\mathbb{N}$ be the set of natural numbers; i.e. the natural-numbers object in $Set$. Let $B$ be a set with strictly larger cardinality ${|B|}\gt {|\mathbb{N}|}$; e.g. $B\coloneqq 2^{2^{\mathbb{N}}}$ will do because of the [[diagonal argument]]. Then the \emph{Cohen poset} $P$ is defined to be the set of morphisms \begin{displaymath} p:F_p\to 2 \end{displaymath} where $F_p\subseteq B\times \mathbb{N}$ is any [[finite set|finite]] subset. The order relation on $P$ is defined by \begin{displaymath} q\le p\; iff\; F_q\supseteq F_p\;and\;q|_{F_p}=p \end{displaymath} where the right-hand condition means that $q$ restricted to $F_p$ must coincide with $p$. \end{defn} We think of each element of $P$ as an approximation to the function $F:B\times\mathbb{N}$ that is the [[exponential|transpose]] of the putative monomorphism \begin{displaymath} f:B\to 2^\mathbb{N} \end{displaymath} with ``smaller'' elements considered as better approximations. The very rough intuition is that $p\to q\to \dots$ (if $p\ge p\ge \dots$) forms a [[codirected diagram]] of monomorphisms with domains of increasing size whose colimit is $f$, and that by [[free cocompletion]] (i.e. forming (pre)sheaves) we obtain a topos in which this colimit exists. \begin{lemma} \label{}\hypertarget{}{} The [[dense topology|dense]] [[Grothendieck topology]] on $P$ is [[subcanonical topology|subcanonical]]. In other words: For any $p\in P$ we have $y(p)=hom(-,p)\in\Sh(P,\neg\neg)$ \end{lemma} \begin{lemma} \label{}\hypertarget{}{} Let $k_{B\times\mathbb{N}}:\begin{cases}P\to Set \\ p \mapsto B\times\mathbb{N}\end{cases}$ denote the functor constant on $B\times\mathbb{N}$. Let \begin{displaymath} A:\begin{cases} P\to Set \\ p\mapsto \{(b,n)|p(b,n)=0\}\subseteq B\times \mathbb{N} \end{cases} \end{displaymath} Then we have $\neg\neg A=A$ in $Sub(k_{B\times\mathbb{N}})$; i.e. $A$ is a closed subobject with respect to the dense topology $\neg\neg$ in the [[algebra of subobjects]] of $k_{B\times\mathbb{N}}$. \end{lemma} Let $\Omega$ denote the [[subobject classifier]] of $Psh(P)$. Let $\Omega_{\neg\neg}$ denote the subobject classifier of $Sh(P,\neg\neg)$. Recall that $\Omega_{\neg\neg}$ is given by the equalizer $\Omega_{\neg\neg}=eq(id_\Omega,\neg\neg)$. By the preceding lemma, the [[characteristic morphism]] $\chi_a$ of the subobject $a \colon A\hookrightarrow k_{B\times\mathbb{N}}=k_B\times\k_\mathbb{N}$ factors through some $f \colon k_{B\times\mathbb{N}}\to \Omega_{\neg\neg}$. \begin{lemma} \label{}\hypertarget{}{} The adjoint $g:k_B\to \Omega_{\neg\neg}^{k_{\mathbb{N}}}$ of $f$ is a monomorphism. \end{lemma} \begin{corollary} \label{}\hypertarget{}{} The associated-sheaf functor sends $g$ to a monomorphism in the Cohen topos. \end{corollary} \hypertarget{unrefutability}{}\subsection*{{Unrefutability}}\label{unrefutability} If $V$ is a model of [[ZF]], then the continuum hypothesis and the [[axiom of choice]] both hold in G\"o{}del's [[constructible universe]] $L$ built from $V$. Actually, the GCH holds in $L$ as well. \begin{remark} \label{GCHinZF}\hypertarget{GCHinZF}{} Regarding the statement of the \emph{generalized} continuum hypothesis in \emph{ZF} (not ZFC), one should distinguish various possibilities. One might leave the statement $2^{\aleph_n} = \aleph_{n+1}$ unchanged, so that the GCH becomes a statement just about ordinals or well-ordered sets. But then one could argue such a generalized continuum hypothesis is not as general or strong as it might be, since not all sets can be well-ordered using ZF alone. The more general statement would say that if there are monomorphisms $X \to Y$ and $Y \to P(X)$, then $Y$ is bijective with one of $X, P(X)$. For example, Sierpiski proved that over ZF, the generalized continuum hypothesis implies AC. (See [[Hartogs number]].) For this result, he certainly used the stronger formulation. \end{remark} \hypertarget{EastonTheorem}{}\subsection*{{Generalization: Easton's theorem}}\label{EastonTheorem} Just how flexible can the power [[operation]] $\kappa \mapsto 2^\kappa$ be? There are of course some constraints. Obvious ones are that $\kappa \lt 2^\kappa$ and $2^\kappa \leq 2^\lambda$ whenever $\kappa \leq \lambda$. A more refined one is a consequence of [[König's theorem]], namely that \begin{itemize}% \item $\kappa \lt cof(2^\kappa)$ \end{itemize} where the right side is the [[cofinality]] of $2^\kappa$. A remarkable illustration of the power of the forcing method is [[Easton's theorem]], which says that as far as [[regular cardinals]] go, these are really the \emph{only} constraints. \begin{theorem} \label{}\hypertarget{}{} \textbf{(\hyperlink{Easton70}{Easton 70})} Suppose $\mathcal{M}$ is a [[model]] of [[ZFC]] in which the generalized continuum hypothesis (GCH) holds. Let $F$ be a [[partial function]] from the class of infinite [[regular cardinals]] to the class of [[cardinals]] such that \begin{itemize}% \item $F$ is strictly increasing and preserves the order $\leq$; \item $\kappa$ is less than the cofinality of $F(\kappa)$ for all $\kappa \in dom(F)$. \end{itemize} Then there is a generic extension $\mathcal{M}[G]$ of $\mathcal{M}$ with the same cardinals and cofinalities, such that $\mathcal{M}[G] \models 2^\kappa = F(\kappa)$ for all $\kappa \in dom(F)$. \end{theorem} On the other hand, the behavior of the power operation on [[regular cardinal|singular cardinals]] is not so unconstrained. For example, in a model of ZFC, the smallest cardinal for which GCH fails can never be singular. The so-called ``[[pcf theory]]'' (or ``possible cofinalities theory''), due to [[Saharon Shelah]], gives some information on possible bounds for the power operation on singular cardinals (among other things). \hypertarget{links}{}\subsection*{{Links}}\label{links} \begin{itemize}% \item Stanford Encyclopedia of Philosophy, \emph{\href{http://plato.stanford.edu/entries/continuum-hypothesis/}{The Continuum Hypothesis}} \item MO \emph{Solutions to the Continuum Hypothesis} . (\href{http://mathoverflow.net/questions/23829/solutions-to-the-continuum-hypothesis}{link}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Bell|J. L. Bell]], \emph{Set Theory - Boolean-Valued Models and Independence Proofs} , Oxford Logic Guides \textbf{47} 3rd ed. Oxford UP 2005. \item [[Alonzo Church|A. Church]], \emph{Paul J. Cohen and the Continuum Problem}, pp.15-20 in Proceedings ICM Moscow 1966. (\href{http://www.mathunion.org/ICM/ICM1966.1/Main/icm1966.1.0015.0020.ocr.pdf}{pdf}) \item [[Paul J. Cohen|P. J. Cohen]], \emph{The independence of the continuum hypothesis I}, Proc. Nat. Acad. Sci. \textbf{50} (1963) pp.1143-1148. (\href{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC221287/pdf/pnas00240-0135.pdf}{pdf}) \item [[Paul J. Cohen|P. J. Cohen]], \emph{The independence of the continuum hypothesis II}, Proc. Nat. Acad. Sci. \textbf{51} (1963) pp.105-110. (\href{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC300611/pdf/pnas00175-0117.pdf}{pdf}) \item [[Paul J. Cohen|P. J. Cohen]], \emph{Set Theory and the Continuum Hypothesis} , Benjamin New York 1966. (Dover reprint 2008) \item [[Patrick Dehornoy|P. Dehornoy]], \emph{Progr\`e{}s r\'e{}cents sur l'hypoth\`e{}se du continu (d'apr\`e{}s Woodin)} , S\'e{}minaire Bourbaki expos\'e{} \textbf{915} (2003). (\href{http://www.math.unicaen.fr/~dehornoy/Surveys/DgtUS.pdf}{English version}) \item [[Solomon Feferman]], \emph{The Continuum Hypothesis is neither a definite mathematical problem nor a definite logical problem} , Harvard lectures 2011. (\href{http://math.stanford.edu/~feferman/papers/CH_is_Indefinite.pdf}{pdf}) \item [[Joel David Hamkins]], \emph{The set-theoretic multiverse}, Review of Symbolic Logic 5:416-449 (2012), \href{https://arxiv.org/abs/1108.4223}{arxiv} \item M.C. Fitting, \emph{Intuitionistic Logic, Model Theory and Forcing}, North-Holland Amsterdam 1969. \item [[K. Gödel]], \emph{What is Cantor's continuum problem?} , Am. Math. Monthly \textbf{54} no. 9 (1947) pp.515-25. (\href{http://www.personal.psu.edu/ecb5/Courses/M475W/Readings/Week06-Sep30-IntoTheTwentiethCentury/01-WhatisCantorsContinuumProblembyKurtGodel.pdf}{pdf}) \item [[William Lawvere|F. W. Lawvere]], \emph{Foundations and Applications: Axiomatization and Education}, Bulletin of Symbolic Logic \textbf{9} no.2 (2003) pp.213-224. (\href{https://www.math.ucla.edu/~asl/bsl/0902/0902-006.ps}{ps-preprint}) \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. (sections VI.2, VI.3) \item [[W. Hugh Woodin]], \emph{The Continuum Hypothesis, Part I} , Notices AMS \textbf{48} no.6 (2001) pp.567-576. (\href{http://www.ams.org/notices/200106/fea-woodin.pdf}{pdf}) \item [[W. Hugh Woodin]], \emph{The Continuum Hypothesis, Part II} , Notices AMS \textbf{48} no.7 (2001) pp.681-690. (\href{http://www.ams.org/notices/200107/fea-woodin.pdf}{pdf}) \item W. Easton, \emph{Powers of regular cardinals}, Ann. Math. Logic, 1 (2): 139--178, (1970) \href{https://dx.doi.org/10.1016%2F0003-4843%2870%2990012-4}{doi:10.1016/0003-4843(70)90012-4} \end{itemize} A [[formal proof]] of the independence of the continuum hypothesis from [[ZFC]] is in \begin{itemize}% \item [[Jesse Han]], \emph{Flypitch project -- Formal proof of the independence of CH} (\href{https://github.com/flypitch}{github:flypitch}, \href{https://github.com/flypitch/flypitch-notes/blob/master/forcing-notes.pdf}{pdf}) \end{itemize} [[!redirects CH]] [[!redirects Continuum hypothesis]] [[!redirects GCH]] [[!redirects generalized continuum hypothesis]] [[!redirects Easton's theorem]] [[!redirects Easton theorem]] \end{document}