\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{contractible type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contractible_types}{}\section*{{Contractible types}}\label{contractible_types} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{CategoricalSemantics}{Categorical semantics}\dotfill \pageref*{CategoricalSemantics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[homotopy type theory]], the notion of \textbf{contractible [[type]]} is an internalization of the notion of [[contractible space]] / [[(-2)-truncated]] object. Contractible types are also called of \textbf{[[h-level]] $0$}. They represent the notion \emph{[[true]]} in homotopy type theory. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We work in [[intensional type theory|intensional]] [[type theory]] with [[dependent sums]], [[dependent products]], and [[identity types]], \begin{defn} \label{}\hypertarget{}{} For $X$ a [[type]], let \begin{displaymath} isContr(X) \coloneqq \sum_{x\colon X} \prod_{y\colon X} (y=x) \end{displaymath} be the [[dependent sum]] in one [[variable]] $x : X$ over the [[dependent product]] on the other [[variable]] $y \colon X$ of the $x,y$-[[dependent type|dependent]] [[identity type]] $(x = y)$. We say that $X$ is a \textbf{contractible type} if $isContr(X)$ is an [[inhabited type]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} In [[propositions as types]] language, this can be pronounced as ``there exists a point $x\colon X$ such that every other point $y\colon X$ is equal to $x$.'' Under the [[homotopy theory|homotopy-theoretic]] interpretation, it should be thought of as the type of \emph{contractions} of $X$ --- since the dependent product describes \emph{continuous} functions, the paths from $y$ to $x$ depend continuously on $y$ and thus exhibit a contraction of $X$ to $x$. \end{remark} \begin{prop} \label{}\hypertarget{}{} A provably [[equivalence in homotopy type theory|equivalent]] definition is the [[product type]] of $X$ with the [[isProp]]-type of $X$: \begin{displaymath} isContr(X) \coloneqq X \;\times\; isProp(X) \,. \end{displaymath} \end{prop} (Here of course we have to use a definition of [[isProp]] which doesn't refer to $isContr$). \begin{remark} \label{}\hypertarget{}{} This now says that $X$ is contractible iff $X$ is [[inhabited type|inhabited]] and an [[h-proposition]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} For any type $A$, the type $isContr(A)$ is an [[h-proposition]]. In particular, we can show $isContr(A) \to isContr(isContr(A))$: if a type is contractible, then its space of contractions is also contractible. \end{prop} \begin{prop} \label{}\hypertarget{}{} A type is contractible if and only if it is [[equivalence in homotopy type theory|equivalent]] to the [[unit type]]. \end{prop} \hypertarget{CategoricalSemantics}{}\subsection*{{Categorical semantics}}\label{CategoricalSemantics} We discuss the [[categorical semantics]] of contractible types. Let $\mathcal{C}$ be a [[locally cartesian closed category]] with [[categorical semantics of homotopy type theory|sufficient structure]] to intepret all the above type theory. This means that $\mathcal{C}$ has a [[weak factorization system]] with [[stable path objects]], and that [[acyclic cofibrations]] are preserved by pullback along fibrations between fibrant objects. (We ignore questions of [[coherence]], which are not important for this discussion.) In this [[categorical semantics]], the interpretation of a type $\vdash A : Type$ is a [[fibrant object]] $[\vdash A : Type]$, which for short we will just write $A$. The interpretation of the [[identity type]] $x,y : A \vdash (x = y) : Type$ is as the [[path space object]] $A^I \to A \times A$. The interpretation of $isContr(A)$ is the object obtained by taking the [[dependent product]] of the [[path space object]] along one [[projection]] $p_2 : A\times A\to A$ and then forgetting the remaining morphism to $A$. \begin{displaymath} [isContr(A)] \;\; = \;\; \itexarray{ \prod_{p_2} A^I \\ \downarrow \\ A \\ \downarrow \\ * } \,. \end{displaymath} The interpretation $[\hat a : isContr(A)]$ of a [[term]] of $isContr(A)$ is precisely a morphism $\hat a : * \to \prod_{p_2} A^I$. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[type-theoretic model category]]. Write $[isContr(A)]$ for the [[categorical semantics|interpretation]] of $isContr(A)$ in $\mathcal{C}$. Then: Global points $* \to [isContr(A)]$ in $\mathcal{C}$ are in bijection with [[contraction]] [[right homotopies]] of the object $A$, hence to [[diagrams]] in $\mathcal{C}$ of the form \begin{displaymath} \itexarray{ A &\stackrel{\eta}{\to}& A^I \\ & {}_{\mathllap{(id, const_a)}}\searrow & \downarrow \\ && A \times A } \,, \end{displaymath} where $const_a$ is a morphism of the form $A \to * \stackrel{a}{\to} A$ and where $A^I$ is the [[path space object]] of $A$ in $\mathcal{C}$. \end{prop} \begin{proof} Given a global point $\hat a : * \to \prod_{p_2} A^I$, write $a : * \to A$ for the corresponding composite \begin{displaymath} \itexarray{ * &\stackrel{\hat a}{\to} & \prod_{p_2} A^I \\ &{}_{\mathllap{a}}\searrow & \downarrow \\ && A } \,. \end{displaymath} in $\mathcal{C}$. This is an element in the [[hom set]] $\mathcal{C}_{/A}(a, \prod_{p_2} A^I)$ of the [[slice category]] over $A$. By the ([[base change]] $\dashv$ [[dependent product]])-[[adjunction]] this is equivalently an element in $\mathcal{C}_{/A \times A}( p_2^* a, A^I )$. Notice that the pullback $p_2^* a$ is the left morphism in \begin{displaymath} \itexarray{ A &\to& * \\ {}^{\mathllap{(id,const_a)}}\downarrow && \downarrow^{\mathrlap{a}} \\ A \times A &\stackrel{p_2}{\to}& A } \,. \end{displaymath} Therefore a morphism $p_2^* a \to A^I$ in $\mathcal{C}_{/A \times A}$ is equivalently in $\mathcal{C}$ a diagram of the form \begin{displaymath} \itexarray{ A &&\stackrel{\eta}{\to}&& A^I \\ & {}_{\mathllap{(id,const_a)}}\searrow && \swarrow \\ && A \times A } \,. \end{displaymath} This is by definition a [[contraction]] right [[homotopy]] of $A$. \end{proof} \begin{remark} \label{}\hypertarget{}{} Thus if $isContr(A)$, then $A\to 1$ is a (right) [[homotopy equivalence]], and hence (since $A$ is [[fibrant]]) an [[acyclic fibration]]. Conversely, if $\mathcal{C}$ is a [[model category]], $A$ and $1$ are cofibrant, and $A\to 1$ is an acyclic fibration, then $A\to 1$ is a right homotopy equivalence, and hence $isContr(A)$ has a global element. Thus, in most cases, the existence of a global element of $isContr(A)$ (which is unique up to homotopy, since $isContr(A)$ is an [[h-proposition]]) is equivalent to $A\to 1$ being an acyclic fibration. More generally, we may apply this locally. Suppose that $A\to B$ is a fibration, which we can regard as a dependent type \begin{displaymath} x\colon B \vdash A(x)\colon Type. \end{displaymath} Then we have a dependent type \begin{displaymath} x\colon B \vdash isContr(A(x))\colon Type \end{displaymath} represented by a fibration $isContr(A)\to B$. By applying the above argument in the [[slice category]] $\mathcal{C}/B$, we see that (if $\mathcal{C}$ is a model category, and $A$ and $B$ are cofibrant) $isContr(A)\to B$ has a [[section]] exactly when $A\to B$ is an acyclic fibration. We can also construct the type \begin{displaymath} \prod_{x\colon B} isContr(A(x)) \end{displaymath} in global context, which has a global element precisely when $isContr(A)\to B$ has a section. Thus, a global element of this type is also equivalent to $A\to B$ being an acyclic fibration. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include homotopy n-types - table]] \begin{itemize}% \item [[isEquiv]] \item \textbf{isContr} \item [[isProp]] \item [[contractible space]], [[contractible chain complex]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} [[Coq]]-code for contractible types is at \begin{itemize}% \item \href{https://github.com/HoTT/HoTT/blob/master/Coq/Contractible.v}{HoTT repository} \end{itemize} [[!redirects contractible type]] [[!redirects contractible types]] [[!redirects h-level 0]] [[!redirects h-level 0 type]] [[!redirects (-2)-truncated type]] [[!redirects (-2)-truncated types]] [[!redirects type of contractions]] [[!redirects h-contractible type]] [[!redirects isContr]] \end{document}