\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{convergence} \begin{quote}% This entry is about the notion of limit in [[analysis]] and [[topology]]. For the notion of the same name in [[category theory]] see at \emph{[[limit]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{notation}{Notation}\dotfill \pageref*{notation} \linebreak \noindent\hyperlink{limits_of_filters}{Limits of filters}\dotfill \pageref*{limits_of_filters} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToLimitsInCategoryTheory}{Relation to limits in the sense of category theory}\dotfill \pageref*{RelationToLimitsInCategoryTheory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{limit} of a [[sequence]] (or [[net]]) of points $(x_i)$ in a [[topological space]] (or other [[convergence space]]) $X$ is a point $x$ such that the sequence eventually gets arbitrarily close to $x$. We can also speak of a limit of a [[filter]] on $X$. The notion is of particular and historical importance in [[analysis]], where it serves to define for instance the notion of [[derivative]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The precise definition depends on what sort of space $X$ is. \begin{defn} \label{topological}\hypertarget{topological}{} If $X$ a [[topological space]] and $I$ the set of [[natural numbers]] (or more generally any [[directed set]]) and $\nu = (x_i)_{i\in I}\colon I \to X$ is a [[sequence]] (or a [[net]]) of points in $X$, one says that a point $x \in X$ is a \textbf{limit} of $\nu$ or that $\nu$ \textbf{converges} to $x$ if for each [[neighbourhood]] $U$ in $X$ of $x$ there exists an $n \in I$ such that $x_i \in U$ for each $i \geq n$. \end{defn} An important special case (the original) is: \begin{defn} \label{real}\hypertarget{real}{} If $X$ the [[real line]] and $I$ the set of [[natural numbers]] (or more generally any [[directed set]]) and $\nu = (x_i)_{i\in I}\colon I \to X$ is a [[sequence]] (or a [[net]]) of [[real numbers]], one says that a point $x \in X$ is a \textbf{limit} of $\nu$ or that $\nu$ \textbf{converges} to $x$ if for each [[positive number]] $\epsilon$ there exists an $n \in I$ such that ${|x_i - x|} \lt \epsilon$ for each $i \geq n$. \end{defn} An important generalization (possibly the most general) is: \begin{defn} \label{convergence}\hypertarget{convergence}{} If $X$ a [[convergence space]] and $I$ the set of [[natural numbers]] (or more generally any [[directed set]]) and $\nu = (x_i)_{i\in I}\colon I \to X$ is a [[sequence]] (or a [[net]]) of points in $X$, one says that a point $x \in X$ is a \textbf{limit} of $\nu$ or that $\nu$ \textbf{converges} to $x$ if the [[eventuality filter]] of $\nu$ converges to $x$ (which is a primitive concept in convergence spaces). \end{defn} Other types of [[space]] for which we might put in definitions (or which might have definitions on their own pages) are ([[extended metric space|extended]]) ([[quasimetric space|quasi]])-([[pseudometric space|pseudo]])-[[metric spaces]], ([[quasiuniform space|quasi]])-[[uniform spaces]], [[pretopological spaces]], and (quasi)-[[uniform convergence spaces]]. \hypertarget{notation}{}\subsubsection*{{Notation}}\label{notation} When one of the conditions above holds, we may write any of the following, where `$\to$' is read as `converges to': \begin{itemize}% \item $\nu \to x$, \item $x_i \to_i x$, \item $x_i \to x$ (suppressing the index $i$ by abuse of notation). \end{itemize} Or we may write any of the following, were $\lim$ is read as `the set of limits of': \begin{itemize}% \item $x \in \lim \nu$, \item $x \in \lim_i x_i$, \item $x \in \lim x_i$ (suppressing the index $i$ by abuse of notation). \end{itemize} Of course, the right-hand side has a meaning by itself, as the set of limits itself (a [[subset]] of the [[underlying set]] of $X$, or a [[subspace]] of $X$ itself). If $X$ is a [[Hausdorff space]], then there is at most one point $x$ with the property that the sequence (or net) $\nu$ converges to $x$. Then we may write any of the following, were now $\lim$ is read as `the limit of': \begin{itemize}% \item $x = \lim \nu$, \item $x = \lim_i x_i$, \item $x = \lim x_i$ (suppressing the index $i$ by abuse of notation). \end{itemize} Now the right-hand side by itself is the possibly undefined [[term]] for the limit itself (if it exists). \hypertarget{limits_of_filters}{}\subsubsection*{{Limits of filters}}\label{limits_of_filters} More generally than [[sequences]], and equivalently to [[nets]], we may speak of limits of [[filters]] on $X$. This concept is axiomatized directly in the concept of [[convergence space]]. In the case of a [[topological space]] $X$, a filter of subsets of $X$ converges to a point $x$ if every neighbourhood of $x$ is contained in the filter. In the definitions above, equivalent nets (those with equal [[eventuality filters]]) always converge to the same point. As every [[proper filter]] is the eventuality filter of some net, a proper filter converges to $x$ if any of these nets converges to $x$; the [[improper filter]] converges to every point. (In [[constructive mathematics]], we may cover all filters by saying: $F$ converges to $x$ if, on the assumption that $F$ is proper, any of its nets converges to $x$.) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToLimitsInCategoryTheory}{}\subsubsection*{{Relation to limits in the sense of category theory}}\label{RelationToLimitsInCategoryTheory} The [[limits]] of [[category theory]] are a great generalization of an analogy with the limits discussed here. It turns out, however, that limits in [[topological spaces]] (at least) can be viewed as category-theoretic limits. For now, see \href{http://math.stackexchange.com/a/62800}{this math.sx answer}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[geometric series]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[filter]] \item [[convergence space]] \item [[series]] \item [[limit point]] \item [[radius of convergence]] \item [[uniform convergence]], [[pointwise convergence]] \item [[divergent series]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Limit_%28mathematics%29}{Limit (mathematics)}} \end{itemize} Discussion of this history of the concept, with emphasis on its roots all the way back in [[Zeno's paradoxes of motion]] is in \begin{itemize}% \item Carl Benjamin Boyer, \emph{The history of the Calculus and its conceptual development}, Dover 1949 \end{itemize} category: analysis [[!redirects convergence]] [[!redirects convergences]] [[!redirects convergencies]] [[!redirects converges]] [[!redirects convergence of a sequence]] [[!redirects convergence of sequences]] [[!redirects convergence of a net]] [[!redirects convergence of nets]] [[!redirects convergence of a filter]] [[!redirects convergence of filters]] [[!redirects convergent sequence]] [[!redirects convergent sequences]] [[!redirects convergent net]] [[!redirects convergent nets]] [[!redirects convergent filter]] [[!redirects convergent filters]] [[!redirects limit of a sequence]] [[!redirects limits of a sequence]] [[!redirects limits of sequences]] [[!redirects limit of a net]] [[!redirects limits of a net]] [[!redirects limits of nets]] [[!redirects limit of a filter]] [[!redirects limits of a filter]] [[!redirects limits of filters]] \end{document}