\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{convergence space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{convergence_spaces}{}\section*{{Convergence spaces}}\label{convergence_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{topological_structure}{Topological structure}\dotfill \pageref*{topological_structure} \linebreak \noindent\hyperlink{cluster_spaces}{Cluster Spaces}\dotfill \pageref*{cluster_spaces} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{convergence space} is a generalisation of a [[topological space]] based on the concept of [[convergence]] of [[filters]] (or [[nets]]) as fundamental. The basic concepts of [[point-set topology]] ([[continuous functions]], [[compact space|compact]] and [[Hausdorff space|Hausdorff]] [[topological spaces]], etc) make sense also for convergence spaces, although not all theorems hold. The [[category]] $Conv$ of convergence spaces is a [[quasitopos]] and may be thought of as a [[nice category of spaces]] that includes [[Top]] as a [[full subcategory]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{convergence space} is a [[set]] $S$ together with a [[relation]] $\to$ from $\mathcal{F}S$ to $S$, where $\mathcal{F}S$ is the set of [[filters]] on $S$; if $F \to x$, we say that $F$ \textbf{converges} to $x$ or that $x$ is a \textbf{limit} of $F$. This must satisfy some axioms: \begin{enumerate}% \item Centred: The [[principal ultrafilter]] $F_x = \{ A \;|\; x \in A \}$ at $x$ converges to $x$; \item Isotone: If $F \subseteq G$ and $F \to x$, then $G \to x$; \item Directed: If $F \to x$ and $G \to x$, then some filter contained in the [[intersection]] $F \cap G$ converges to $x$. In light of (2), it follows that $F \cap G \to x$ itself. (Strictly speaking, the relation should not be called [[directed set|directed]] unless also every point is a limit of some filter, but this follows from 1.) \end{enumerate} It follows that $F \to x$ if and only if $F \cap F_x$ does. Given that, the convergence relation is defined precisely by specifying, for each point $x$, a filter of [[subfilter]]s of the principal ultrafilter at $x$. (But that is sort of a tongue twister.) A filter $F$ \textbf{clusters} at a point $x$, written $F \rightsquigarrow x$, if there exists a [[proper filter]] $G$ such that $F \subseteq G$ and $G \to x$. The definition can also be phrased in terms of [[nets]]; a net $\nu$ converges to $x$ if and only if its [[eventuality filter]] converges to $x$. The morphisms of convergence spaces are the [[continuous functions]]; a function $f$ between convergence spaces is \textbf{continuous} if $F \to x$ implies that $f(F) \to f(x)$, where $f(F)$ is the filter generated by the [[filterbase]] $\{F(A) \;|\; A \in F\}$. In this way, convergence spaces form a [[concrete category]] $Conv$. Note that the definition of `convergence' varies in the literature; at the extreme end, one could define it as any relation whatsoever from $\mathcal{F}S$ (or even from the [[proper class|class]] of all nets on $S$) to $S$, but that is so little structure as to be not very useful. An intermediate notion is that of [[filter space]], in which (3) is not required. Here we follow the terminology of \hyperlink{LC}{Lowen-Colebunders}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} In [[measure theory]], given a [[measure space]] $X$ and a [[measurable space]] $Y$, the space of [[almost-everywhere defined]] [[measurable functions]] from $X$ to $Y$ becomes a convergence space under [[convergence almost everywhere]]. In general, this convergence space does not fit into any of the examples below. A [[pseudotopological space]] is a convergence space satisfying the \emph{star property}: \begin{itemize}% \item If $F$ is a filter such that every proper filter $G \supseteq F$ clusters at $x$, then $F$ converges to $x$. \end{itemize} Assuming the [[ultrafilter theorem]] (a weak version of the [[axiom of choice]]), it's enough to require that $F$ converges to $x$ whenever every [[ultrafilter]] that refines $F$ converges to $x$ (or clusters there, since these are equivalent for ultrafilters). A [[subsequential space]] is a pseudotopological space that may be defined using only [[sequences]] instead of arbitrary nets/filters. (More precisely, a filter converges to $x$ only if it refines (the eventuality filter of) a [[infinite sequence|sequence]] that converges to $x$.) A [[pretopological space]] is a convergence space that is \emph{infinitely filtered}: \begin{itemize}% \item If $(F_\alpha)_\alpha$ is any family of filters each of which converges to $x$, then $\bigcap_\alpha F_\alpha$ converges to $x$. \end{itemize} In particular, the [[intersection]] of all of the filters converging to $x$ (the [[neighbourhood filter]] of $x$) also converges to $x$. Note that every pretopological space is pseudotopological. Any [[topological space]] is a convergence space, and in fact a pretopological one: we define $F \to x$ if every [[neighbourhood]] of $x$ belongs to $F$. A convergence space is \textbf{topological} if it comes from a topology on $S$. The [[full subcategory]] of $Conv$ consisting of the topological convergence spaces is [[equivalence of categories|equivalent]] to the category [[Top]] of topological spaces. In this way, the definitions below are all suggested by theorems about topological spaces. Every [[Cauchy space]] is a convergence space. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The [[improper filter]] (the [[power set]] of $S$) converges to every point. On the other hand, a convergence space $S$ is \textbf{[[Hausdorff space|Hausdorff]]} if every [[proper filter]] converges to at most one point; then we have a [[partial function]] $\lim$ from the proper filters on $S$ to $S$. A topological space is Hausdorff in the usual sense if and only if it is Hausdorff as a convergence space. A convergence space $S$ is \textbf{[[compact space|compact]]} if every proper filter clusters at some point; that is, every proper filter is contained in a convergent proper filter. Equivalently (assuming the [[ultrafilter theorem]]), $S$ is compact iff every ultrafilter converges. A topological space is compact in the usual sense if and only if it is compact as a convergence space. The topological convergence spaces can be characterized as the pseudotopological ones in which the convergence satisfies a certain ``associativity'' condition. In this way one can (assuming the ultrafilter theorem) think of a topological space as a ``[[generalized multicategory]]'' parametrized by ultrafilters. In particular, note that a compact Hausdorff pseudotopological space is defined by a single function $\mathcal{U}S \to S$, where $\mathcal{U}S$ is the set of ultrafilters on $S$, such that the composite $S \to \mathcal{U}S \to S$ is the identity. That is, it is an [[algebra for an endofunctor|algebra]] for the [[pointed object|pointed]] [[endofunctor]] $\mathcal{U}$. The compact Hausdorff \emph{topological} spaces (the [[compacta]]) are precisely the [[algebra for a monad|algebras]] for $\mathcal{U}$ considered as a [[monad]]. If we treat $\mathcal{U}$ as a monad on [[Rel]], then the [[lax algebra]]s are the topological spaces in their guise as [[relational beta-modules]]. \hypertarget{topological_structure}{}\subsection*{{Topological structure}}\label{topological_structure} Given a convergence space, a filter $F$ \textbf{star-converges} to a point $x$, written $F \to^* x$, if every proper filter that refines $F$ clusters at $x$. (Assuming the [[ultrafilter theorem]], $F$ star-converges to $x$ iff every ultrafilter that refines $F$ converges to $x$.) The relation of star convergence makes any convergence space into a [[pseudotopological space]] with a weaker convergence. In this way, $Ps Top$ becomes a [[reflective subcategory]] of $Conv$ over $Set$. \begin{quote}% Note: the term `star convergence' and its symbol `$\to^*$' are my own, formed from `star property' above, which I got from \emph{[[HAF]]}. Other possibilities that I can think of: `ultraconvergence', `universal convergence', `subconvergence'. ---[[Toby Bartels|Toby]] \end{quote} Given a convergence space, a set $U$ is a \textbf{[[neighbourhood]]} of a point $x$, written $x \in^\circ U$, if $U$ belongs to every filter that converges to $x$; it follows that $U$ belongs to every filter that star-converges to $x$. The relation of being a neighbourhood makes any convergence space into a [[pretopological space]], although the pretopological convergence is weaker in general. In this way, $Pre Top$ is a [[reflective subcategory]] of $Conv$ (and in fact of $Ps Top$) over $Set$. Other pretopological notions: The \textbf{[[preinterior]]} of a set $A$ is the set of all points $x$ such that $x \in^\circ A$. The \textbf{[[preclosure]]} of $A$ is the set of all points $x$ such that every neighbourhood $U$ of $x$ meets (has [[inhabited set|inhabited]] [[intersection]] with) $A$. For more on these, see [[pretopological space]]. Given a convergence space, a set $G$ is \textbf{[[open subset|open]]} if $G$ belongs to every filter that converges to any point in $G$, or equivalently if $G$ belongs to every filter that star-converges to any point in $G$, or equivalently if $G$ equals its preinterior. The class of open sets makes any convergence space into a [[topological space]], although the topological convergence is weaker in general. In this way, $Top$ is a [[reflective subcategory]] of $Conv$ (and in fact of $Ps Top$ and $Pre Top$) over $Set$. Other topological notions: A set $F$ is \textbf{[[closed subset|closed]]} if $F$ meets every neighbourhood of every point that belongs to $F$, equivalently if $F$ equals its preclosure. The \textbf{[[interior]]} of $A$ is the [[union]] of all of the open sets contained in $A$; it is the largest open set contained in $A$. The \textbf{[[closure]]} of $A$ is the [[intersection]] of all of the closed sets that contain $A$; it is the smallest closed set that contains $A$. (For a topological convergence space, the interior and closure match the preinterior and preclosure.) \begin{theorem} \label{subcats}\hypertarget{subcats}{} The inclusions $Top \to Pre Top \to Ps Top \to Conv$ are all inclusions of [[full subcategories]] over $Set$. That is, they all agree on what a [[continuous function]] is. \end{theorem} \begin{proof} The only hard part is proving that, if $f(\mathcal{F}) \to^* f(x)$ whenever $\mathcal{F} \to x$ in a [[pretopological space]], then $x \in^\circ f^*(V)$ whenever $f(x) \in^\circ V$. This is usually proved [[proof by contradiction|by contradiction]] and flagrant use of [[axiom of choice|choice]]: supposing that $f(x) \in^\circ V$ but $x \notin^\circ f^*(V)$, then every neighbourhood $U$ of $x$ must satisfy $U \nsubseteq f^*(V)$, so choose for each such $U$ a point $y_U$ such that $y_U \in U$ but $f(y_U) \notin V$, defining a net $y$ (indexed by neighbourhoods of $x$ ordered by reverse inclusion), such that $y \to x$, but $\neg\big(f(y) \rightsquigarrow f(x)\big)$, so $y \nrightarrow^* f(x)$, getting a contradiction. But the theorem is in fact perfectly [[constructive mathematics|constructive]]: the filter $\mathcal{N}_x$ of neighbourhoods of $x$ converges to $x$, so $f(\mathcal{N}_x) \to^* f(x)$; all that really matters is that $f(\mathcal{N}_x) \rightsquigarrow f(x)$, so that for each $V \ni^\circ f(x)$ and $U \ni^\circ x$, for some $W$ with $x \in^\circ W \subseteq U$, $f(W) \subseteq V$, so $W \subseteq f^*(V)$, making $f^*(V)$ a neighbourhood of $x$. \end{proof} \hypertarget{cluster_spaces}{}\subsection*{{Cluster Spaces}}\label{cluster_spaces} The notion of clustering generalizes convergence. A \textbf{cluster space} is a [[set]] $S$ together with a [[relation]] $\rightsquigarrow$ from $\mathcal{F}S$ to $S$; if $F \rightsquigarrow x$, we say that $F$ \textbf{clusters} at $x$ or that $x$ is a \textbf{cluster point} of $F$. The axioms are as follows: \begin{enumerate}% \item Centred: The [[principal ultrafilter]] $F_x\rightsquigarrow x$; \item Isotone: If $F \supseteq G$ and $F \rightsquigarrow x$, then $G \rightsquigarrow x$; \item Directed: If $F\cap G \rightsquigarrow x$ then $F \rightsquigarrow x$ or $G \rightsquigarrow x$. \end{enumerate} Every convergence space is a cluster space and many of the notions of convergence generalize to cluster spaces, including continuous functions, open/closed sets, neighborhood filter, pre-closure, compactness, etc. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Eva Lowen-Colebunders (1989). Function Classes of Cauchy Continuous Maps. Dekker, New York, 1989. \item Joseph Muscat (2015) An axiomatization of filter clustering. Conference: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) \end{itemize} [[!redirects convergence space]] [[!redirects convergence spaces]] [[!redirects convergence structure]] [[!redirects convergence structures]] [[!redirects convergence relation]] [[!redirects convergence relations]] \end{document}