\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{convex function} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{convex function} is a [[real numbers|real]]-valued [[function]] defined on a [[convex set]] whose [[graph]] is the boundary of a [[convex set]]. There is another context where people say a function is convex if it is a [[Lipschitz function]] between [[metric spaces]] with Lipschitz constant (or Lipschitz modulus) 1. These are different concepts of convexity, although there are relations between convexity and Lipschitz continuity, as we shall see below. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $D$ be a [[convex space]]. A [[function]] $f \colon D \to \mathbb{R}$ is \textbf{convex} if the [[set]] $\{(x, y) \in D \times \mathbb{R}: y \geq f(x)\}$ is a convex subspace of $D \times \mathbb{R}$. Equivalently, $f$ is \textbf{convex} if for all $x, y \in D$, \begin{displaymath} f(t x + (1-t) y) \leq t f(x) + (1-t) f(y) \end{displaymath} whenever $0 \leq t \leq 1$. This definition obviously extends to functions $f \colon D \to I$ where $I$ is an [[interval]] of $\mathbb{R}$ (whether open or closed or half-open, it doesn't matter). The function $f$ is called \textbf{concave} if it satisfy the reverse inequality to the one given above. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A [[homomorphism]] of [[convex sets]], i.e. a convex-linear map, $D \to \mathbb{R}$, is of course convex. \item The [[norm]] function $\mathbb{C} \to \mathbb{R}$ is convex. This follows readily from multiplicativity ${|x y|} = {|x|} \cdot {|y|}$ and the [[triangle inequality]] ${|x + y|} \leq {|x|} + {|y|}$. \item More generally, for a [[normed vector space]] $V$, the norm function ${\|(-)\|}$ is convex, again by the triangle inequality and the scaling axiom ${\|\alpha v\|} = {|\alpha|} \cdot {\|v\|}$ for [[scalars]] $\alpha$. \item For any twice-[[differentiable function]] $f \colon (a, b) \to \mathbb{R}$, the second derivative $f''$ is nonnegative iff $f$ is convex; this may be proven using the [[mean value theorem]]. Examples include the [[exponential function]] $\exp: (-\infty, \infty) \to \mathbb{R}$ and the $p$-power function $[0, \infty) \to \mathbb{R}: t \mapsto t^p$ if $p \geq 1$. \item More generally, for an open convex region $D \subseteq \mathbb{R}^n$ in a [[Euclidean space]], a twice-differentiable function $f: D \to \mathbb{R}$ is convex iff its [[Hessian]] is a [[semidefinite element|positive semidefinite]] [[bilinear form]]. \item Any positive $\mathbb{R}$-[[linear combination]] of convex functions on $D$ is again convex. \item The pointwise [[maximum]] of two convex functions on $D$ is again convex. \item If $g: V \to W$ is a homomorphism or convex-linear map between [[convex spaces]], and if $f: W \to \mathbb{R}$ is convex, then $f \circ g: V \to \mathbb{R}$ is convex. \end{itemize} In the next two examples, $I \subseteq \mathbb{R}$ is an [[interval]]. \begin{itemize}% \item It is not generally true that a composition $D \stackrel{g}{\to} I \stackrel{f}{\to} \mathbb{R}$ of convex functions is convex. For example, this fails for the case $D = \mathbb{R}$ and $g(x) = x^2 + 1$ and $f: [1, \infty) \to \mathbb{R}$ given by $f(x) = x^{-1}$. \item However, if $f: I \to \mathbb{R}$ is both [[monotone function|monotone increasing]] and convex, then for any convex function $g: D \to I$, the composite $f \circ g: D \to \mathbb{R}$ is convex (as is easily shown). \end{itemize} A special case of the last class of examples are functions of the form $e^f = \exp \circ f$ where $f$ is convex. We say a function $f: D \to (0, \infty)$ is \emph{log-convex} if $\log f$ is convex. We see then that log-convex functions are also convex. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{lemma} \label{squeeze}\hypertarget{squeeze}{} If $f: (a, b) \to \mathbb{R}$ is convex and $u \lt v \lt w \in (a, b)$, then \begin{displaymath} \frac{f(u) - f(v)}{u - v} \leq \frac{f(u) - f(w)}{u - w} \leq \frac{f(v) - f(w)}{v - w}. \end{displaymath} Consequently, the function $x \mapsto \frac{f(x) - f(v)}{x - v}$ on the domain $u \lt x \lt v$ is increasing and is bounded above by $\frac{f(v)-f(w)}{v-w}$; similarly, this function on the domain $v \lt x \lt w$ is increasing and bounded below by $\frac{f(u)-f(v)}{u-v}$. \end{lemma} The proof is virtually trivial; just write $v$ as a convex combination $t u + (1-t)w$ and use the definition of convexity. \begin{prop} \label{}\hypertarget{}{} A convex function $f: (a, b) \to \mathbb{R}$ is continuous. \end{prop} \begin{proof} For any point $x_0 \in (a, b)$ there are $s, t, u, v \in (a, b)$ with $s \lt t \lt x_0 \lt u \lt v$. Then for any $x \in (t, x_0) \cup (x_0, u)$ we have by Lemma \ref{squeeze} \begin{displaymath} \frac{f(s)-f(t)}{s-t} \leq \frac{f(x) - f(x_0)}{x-x_0} \leq \frac{f(u)-f(v)}{u-v} \end{displaymath} so that $K = \max\{\left\vert \frac{f(s)-f(t)}{s-t}\right\vert, \left\vert \frac{f(u)-f(v)}{u-v}\right\vert\}$ serves as a Lipschitz constant, i.e., we have \begin{displaymath} |f(x) - f(x_0)| \leq K|x - x_0| \end{displaymath} for all $x \in (t, u)$. This is enough to force continuity at the point $x_0$. \end{proof} In the converse direction, we have the following result which frequently arises in practice. \begin{prop} \label{}\hypertarget{}{} If $D \subseteq \mathbb{R}^n$ is a convex set and $f: D \to \mathbb{R}$ is a continuous function such that \begin{displaymath} f\left(\frac{x+y}{2}\right) \leq \frac{f(x) + f(y)}{2}, \end{displaymath} then $f$ is convex. \end{prop} \begin{proof} For any fixed $x, y \in D$, the function $h: [0, 1] \to \mathbb{R}$ defined by \begin{displaymath} h(t) = t f(x) + (1-t)f(y) - f(t x + (1-t)y) \end{displaymath} is continuous. The [[inverse image]] $h^{-1}([0, \infty))$ is closed in $[0, 1]$ and, by an easy induction argument, contains the set of [[dyadic rational numbers]] $t \in [0, 1]$, which is dense in $[0, 1]$. Being closed and dense, $h^{-1}([0, \infty))$ is all of $[0, 1]$, i.e., $h(t) \geq 0$ for all $t \in [0, 1]$, but this is precisely the condition that $f$ is convex. \end{proof} Another easy consequence of Lemma \ref{squeeze} is \begin{prop} \label{}\hypertarget{}{} For a convex function $f: (a, b) \to \mathbb{R}$, the right-hand and left-hand derivatives \begin{displaymath} \underset{x \searrow x_0}{\lim} \frac{f(x)-f(x_0)}{x-x_0}, \qquad \underset{x \nearrow x_0}{\lim} \frac{f(x)-f(x_0)}{x-x_0} \end{displaymath} of $f$ exist at every point $x_0 \in (a, b)$, and the left-hand derivative at $x_0$ is less than or equal to the right-hand derivative at $x_0$. \end{prop} It further follows from Lemma \ref{squeeze} that if $f$ is convex and we define $(D f)(x_0)$ to be the average of the right-hand and left-hand derivatives, then $D f$ is monotone increasing and hence is discontinuous at at most countable many points of jump discontinuity (whence $D f$ is [[Riemann integration|Riemann-integrable]], for instance). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[convex analysis]] \item [[Legendre transform]] \item [[Lipschitz function]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Convex_function}{Convex function}} \end{itemize} [[!redirects convex map]] [[!redirects convex maps]] [[!redirects convex function]] [[!redirects convex functions]] [[!redirects log-convex function]] [[!redirects log-convex functions]] [[!redirects concave map]] [[!redirects concave maps]] [[!redirects concave function]] [[!redirects concave functions]] [[!redirects log-concave function]] [[!redirects log-concave functions]] \end{document}