\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{convex space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{abstract_convex_sets}{Abstract convex sets}\dotfill \pageref*{abstract_convex_sets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{convex space} (also called \textbf{barycentric algebra} and other terms, invented independently many times) is a [[set]] [[extra structure|equipped]] with a notion of taking weighted averages, or convex-[[linear combinations]], of its elements. Do not confuse this with an (abstract) \emph{[[convex set]]} , which a special kind of convex space, also defined below. The [[category]] of convex spaces is an algebraic theory, being the affine part of the theory of $K$-(semi)modules with only the idempotent operations. This definition is used by \hyperlink{Meng}{Meng (1989)}, and many basic properties of the category are detailed therein. The category is complete, cocomplete, symmetric monoidal closed under the (usual) tensor product construction, and has a cogenerator \hyperlink{Borger}{Borger and Kemper (1994)}. The subcategory consisting of the single object, the unit interval, is dense (left-adequate) in the category. This follows from Isbell's theorem on left adequate subcategories for algebraic theories, using the fact that the free convex space on 2 elements is the unit interval. Axiomatically, a convex space can be characterized as a [[set]] $X$ equipped with a family of [[functions]] $c_p : X \times X \to X$ satisfying some natural [[axioms]] (described below). For examples All [[nonunital ring|nonunital]] [[commutative rings]] are convex spaces, with the map $c_p(x,y) = x + p(y-x)$. The [[monad]] assigning to any set the free convex space on that set is a [[finitary monad|finitary]] [[commutative monad]]. We can thus follow Durov in thinking of it as a [[generalized ring]]. This allows us to think of convex spaces as `modules' of a generalized ring, very much as [[vector spaces]] are modules of a field. This is also true of the relatives of convex spaces: [[affine space|affine spaces]] and [[conical space|conical spaces]]. For example, all \textbf{affine spaces} are convex spaces as defined below. Of particular importance are convex spaces parametrized by the interval $P = [0,1]$ or the Boolean algebra $P = \{0,1\}$. These two algebras are dual, in a certain sense described by \hyperlink{Jacobs}{Jacobs (2009)}. This duality is functorial, and therefore is present for convex spaces for general $P$. This leads to the notion of a [[dual convex space]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{convex space} is a [[set]] $X$ equipped with: \begin{itemize}% \item a multiplicatively closed [[subset]] $Q$ of a [[semiring|(semi)]][[ring]] $P$, so that for each element $p\in Q$ there exists an element $q\in Q$ such that $p+q=1$, and \item an operation $c_p: X \times X \to X$ defined for all $p\in Q$, \end{itemize} such that the following identities always hold: \begin{itemize}% \item $c_0(x,y) = x$, \item $c_p(x,x) = x$ for all $p \in P$, \item $c_p(x,y) = c_{1-p}(y,x)$ for all $p \in P$ (in semiring case replace $1-p$ by $q$ and require that $p+q = 1$), \item $c_p(x, c_q(y,z)) = c_{p q}(c_r(x,y),z)$ for all $p,q,r \in P$ satisfying $p(1 - q) = (1 - p q)r$. \end{itemize} As a consequence of the first and third axioms, $c_1(x,y) = c_0(y,x) = y$. This defines convex spaces as a [[variety of algebras]], with one binary operation for each $p$. The intended interpretation is that $c_p(x,y) = x + p(y-x) = (1-p)x + p y$. i.e., $c_p(x,y)$ is the $p$-weighted average of $x$ and $y$, where $x$ gets weight $1-p$ and $y$ gets weight $p$. By thinking of $p$ as a continuous parameter, this interpretation has the advantage of ``starting'' at $x$, then moving toward $y$ at ``rate'' $p$. This interpretation is `[[bias|biased]]', in the sense that the centered choice $p=0$ favors $x$. It is also possible to give an `[[bias|unbiased]]' definition, which characterizes to convex-linear combinations of many points. This is an $n$-ary operation parametrised by a list $p := (p_1,\ldots,p_n)$ satisfying $\sum_{i = 1}^n p_i = 1$. If $x := (x^1,\ldots, x^n)$, then $c_p(x) := \sum_i p_i x^i$. A [[homomorphism]] of convex spaces may be called a \textbf{convex-linear map} or an \textbf{affine linear map} (since an [[affine space]] is a convex space with extra properties, as in the examples below). It should probably \emph{not} be called a `convex map', which (between affine spaces) is something more general. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Any real [[vector space]] is a convex space, with $c_p(x,y) = x + p(y-x)$. In the unbiased version, any convex-linear combination is a [[linear combination]]. Note that a convex-linear map between vector spaces may not be a linear map, since it may not preserve the identity; thus, a vector space is a convex space with [[extra structure]]. More generally, any real [[affine space]] is a convex space; since $p + (1 - p) = 1$, the expression for $c_p$ in a vector space is valid in an affine space. In the unbiased version, any convex-linear combination is an [[affine linear combination]]. Now any convex-linear map between affine spaces is an affine linear map (and conversely); an affine space is a convex space with [[extra properties]]. Still more generally, any [[convex subset]] (that is, one containing the entire line segment between two given points) of a real [[affine space]] is a convex space (again with extra properties, which are described algebraically below). The [[Boolean field]] $\{0,1\}$ is a convex space with $c_p(x,y) = x \vee y = x + y - x y$ whenever $0 \lt p \lt 1$ (with $c_0(x,y) = x$ and $c_1(x,y) = y$ as always); this cannot be realised as a subset of a vector space. This can be generalised to any (possibly unbounded) [[semilattice]]. (It would be nice to find an example like this that can be defined constructively; this one relies on [[excluded middle]].) \hypertarget{abstract_convex_sets}{}\subsection*{{Abstract convex sets}}\label{abstract_convex_sets} There is a nice abstract converse to the example of a [[convex subset]] of an affine space. A convex space is \textbf{cancellative} if $y = z$ whenever $c_p(x,y) = c_p(x,z)$ for some $c$ and $p \ne 0$. We may call a cancellative convex space an \textbf{abstract convex set}. The justification for this terminology is this \begin{utheorem} A convex space is cancellative if and only if it is isomorphic (as a convex space) to a convex subset of some real affine space. \end{utheorem} Compare this with the theorem that a [[monoid]] is [[cancellative monoid|cancellative]] if and only if it is isomorphic to a submonoid of some [[group]]. Of course, most of the examples given above are cancellative, being manifestly given as convex subsets of real affine space. However, the last example --- a semilattice with $c_p(x,y) = x \vee y$ whenever $0 \lt p \lt 1$ --- is non-cancellative. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[convex function]] \item [[distribution monad]] \item [[monads of probability, measures, and valuations]] \item [[vector space]], [[affine space]], [[conical space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Convex spaces have been rediscovered many times under many different names. References tend to define $c_p$ only for $0 \lt p \lt 1$, but it seems obvious that it's best to include the edge cases as well. Classically, it makes no difference, but the definition above is probably better in [[constructive mathematics]]. \begin{itemize}% \item \emph{[[Handbook of Analysis and its Foundations]]}, Section 12.7 (short and to the point). \item Borger \& Kemper, Cogenerators for convex spaces, Applied Categorical Struc- tures, Vol. 2 (1994), 1-11. \item Romanowska, Smith, Orowska; Abstract barycentric algebras; \href{http://staff.science.uva.nl/~gfontain/tacl09-abstracts/tacl2009_submission_48.pdf}{pdf}. This generalises from $[0,1]$ to an arbitrary $L \Pi$-algebra ($L$ for `ukasiewicz', $\Pi$ for `product', so think of $[0,1]$ as a space of fuzzy truth values). \item Romanowska \& Smith (1985); Modal Theory: An Algebraic Approach to Order, Geometry, and Convexity; Res. Exp. Math. 9; Heldermann-Verlag, Berlin, 1985. \item Marshall Harvey Stone, \emph{Postulates for the barycentric calculus}, Ann. Mat. Pura. Appl. (4), 29:25--30, 1949. \item [[Tobias Fritz]], Convex spaces I: definition and examples. \href{http://arxiv.org/abs/0903.5522}{arXiv/0903.5522} \item [[John Baez]], [[Tobias Fritz]], [[Tom Leinster]], [[johnbaez:Convex spaces and an operadic approach to entropy]], $n$Lab draft \item [[Bart Jacobs]], \emph{Duality for convexity} \href{http://arxiv.org/abs/0911.3834}{arXiv/0911.3834} \item J.R. Isbell, Adequate subcategories, Illinois Journal of Math, 4, 541-552 (1960). \item Shiri Artstein-Avidan, Vitali Milman, \emph{The concept of duality in convex analysis, and the characterization of the Legendre transform}, Annals of Math. \textbf{169}, n.2, 661-674 (2009) \item Joe Flood, \emph{Semiconvex geometry}, J. Austral. Math. Soc. Ser. A \textbf{30} (1980/81), 496---510. \item T. Swirszcz, \emph{Monadic functors and categories of convex sets} , Preprint No. \textbf{70}, \emph{Proc. Inst. Math. Pol. Acad. Sci.}, Warsaw; \emph{Monadic functors and convexity}, \emph{Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.} \textbf{22} (1974), 39--42. \item Stanley P. Gudder, \emph{Convexity and mixtures}, SIAM Review \textbf{19} (1977), 221--240; \emph{A general theory of convexity}, Milan Journal of Mathematics, \textbf{49} (1979), 89--96. \item Xiao-qing Meng, \emph{Categories of convex sets and of metric spaces with applications to stochastic programming and related areas}, PhD thesis ([[Meng.djvu|djvu:file]]) \end{itemize} Many other references, and a discussion of how convex spaces have been repeatedly rediscovered, can be found at the $n$-Category Caf\'e{} post \href{http://golem.ph.utexas.edu/category/2009/04/convex_spaces.html}{Convex Spaces}. [[!redirects convex space]] [[!redirects convex spaces]] [[!redirects barycentric algebra]] [[!redirects barycentric algebras]] [[!redirects convex combination]] [[!redirects convex combinations]] [[!redirects convex linear combination]] [[!redirects convex linear combinations]] [[!redirects convex-linear combination]] [[!redirects convex-linear combinations]] [[!redirects convex linear function]] [[!redirects convex linear functions]] [[!redirects convex-linear function]] [[!redirects convex-linear functions]] [[!redirects convex linear map]] [[!redirects convex linear maps]] [[!redirects convex-linear map]] [[!redirects convex-linear maps]] \end{document}