\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{core of a ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{CoreOfARing}\hypertarget{CoreOfARing}{} For $R$ a [[commutative ring]], its \textbf{[[core of a ring|core]]} $c R$ is the [[regular image]] of the unique [[ring]] [[homomorphism]] $\mathbb{Z} \overset{e}{\longrightarrow} R$ (note that $\mathbb{Z}$ is the [[initial object|initial]] commutative ring). That is, it is the smallest [[regular monomorphism]] into $R$ in the category [[CRing]]. By the general construction of regular images (\href{image#AsEqualizer}{here}), this can be computed as the [[equalizer]] of the two inclusions from $R$ into the [[pushout]] $R\sqcup_{\mathbb{Z}} R$. Since $\mathbb{Z}$ is initial, this is just the [[coproduct]] $R\sqcup R$ in $CRing$, which is the [[tensor product of abelian groups]] $R\otimes R$ equipped with its canonically induced commutative ring structure (\href{CRing#CoproductIsTensorProduct}{prop.}). Thus the most explicit definition of $c R$ is that it is the [[equalizer]] in \begin{displaymath} c R \overset{equ}{\longrightarrow} R \stackrel{\longrightarrow}{\longrightarrow} R \otimes R \,, \end{displaymath} where the top morphism is \begin{displaymath} R \simeq \mathbb{Z} \otimes R \overset{e \otimes id}{\longrightarrow} R \otimes R \end{displaymath} and the bottom one is \begin{displaymath} R \simeq R \otimes \mathbb{Z} \overset{id \otimes e}{\longrightarrow} R \otimes R \,. \end{displaymath} A ring which is [[isomorphism|isomorphic]] to its core is called a \textbf{solid ring}. \end{defn} (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, \S{}1, def. 2.1}, \hyperlink{Bousfield79}{Bousfield 79, 6.4}) \begin{remark} \label{DualInterpretation}\hypertarget{DualInterpretation}{} We may think of the [[opposite category]] $CRing^{op}$ as that of affine [[arithmetic schemes]]. Here for $R \in CRing$ we write $Spec(R)$ for the same object, but regarded in $CRing^{op}$. So the [[initial object]] $\mathbb{Z}$ in [[CRing]] becomes the [[terminal object]] [[Spec(Z)]] in $CRing^{op}$, and so for every $R$ there is a unique morphism \begin{displaymath} Spec(R) \longrightarrow Spec(Z) \end{displaymath} in $CRing^{op}$, exhibiting every affine [[arithmetic scheme]] $Spec(R)$ as equipped with a map to the base scheme [[Spec(Z)]]. Since the [[coproduct]] in [[CRing]] is the [[tensor product]] of rings (\href{CRing#CoproductIsTensorProduct}{prop.}), this is the dually the [[Cartesian product]] in $CRing^{op}$ and hence \begin{displaymath} Spec(R \otimes R) \simeq Spec(R) \times Spec(R) \end{displaymath} exhibits $R \otimes R$ as the ring of functions on $Spec(R) \times Spec(R)$. Hence the terminal morphism $Spec(R) \to Spec(\mathbb{Z})$ induced the corresponding [[Cech groupoid]] [[internal groupoid|internal]] to $CRing^{op}$ \begin{displaymath} \itexarray{ Spec(R) \times Spec(R) \times Spec(R) \\ \downarrow \\ Spec(R) \times Spec(R) \\ {}^{\mathllap{s}}\downarrow \uparrow \downarrow^{\mathrlap{t}} \\ Spec(R) } \,. \end{displaymath} This exhibits $R \otimes R$ (the ring of functions on the scheme of morphisms of the Cech groupoid) as a [[commutative Hopf algebroid]] over $R$. Moreover, the arithmetic scheme of [[isomorphism classes]] of this groupoid is the [[coequalizer]] of the [[source]] and [[target]] morphisms \begin{displaymath} Spec(R) \times Spec(R) \underoverset {\underset{s}{\longrightarrow}} {\overset{t}{\longrightarrow}} {\phantom{AA}} Spec(R) \overset{coeq}{\longrightarrow} Spec(c R) \,, \end{displaymath} also called the \emph{[[coimage]]} of $Spec(R) \to Spec(\mathbb{Z})$. Since [[limits]] in the [[opposite category]] $CRing^{op}$ are equivaletly colimits in $CRing$, this means that the ring of functions on the scheme of isomorphism classes of the Cech groupoid is precisely the core $c R$ or $R$ according to def. \ref{CoreOfARing}. This is morally the reason why for $E$ a [[homotopy commutative ring spectrum]] then the core $c \pi_0(E)$ of its underlying ordinary ring in degree 0 controls what the $E$-[[Adams spectral sequence]] converges to (\hyperlink{Bousfield79}{Bousfield 79, theorems 6.5, 6.6}, see \href{Adams+spectral+sequence#ConvergenceStatements}{here}), because the $E$-Adams spectral sequence computes [[E-nilpotent completion]] which is essentially the analog in [[higher algebra]] of the above story: namely the coimage (\href{infinity-image#ViaColimitOfCechNerve}{(infinity,1)-image}) of $Spec(E) \to$ [[Spec(S)]] (see \href{Adams+spectral+sequence#DefinitionInHigherAlgebra}{here}). \end{remark} \hypertarget{classification}{}\subsection*{{Classification}}\label{classification} \begin{theorem} \label{}\hypertarget{}{} The following is the complete list of solid rings (def. \ref{CoreOfARing}) up to [[isomorphism]]: \begin{enumerate}% \item The [[localization of a ring|localization]] of the ring of [[integers]] at a set $J$ of [[prime numbers]] \begin{displaymath} \mathbb{Z}[J^{-1}] \,; \end{displaymath} \item the [[cyclic rings]] \begin{displaymath} \mathbb{Z}/n\mathbb{Z} \end{displaymath} for $n \in \mathbb{N}$, $n \geq 2$; \item the [[Cartesian product|product]] rings \begin{displaymath} \mathbb{Z}[J^{-1}] \times \mathbb{Z}/n\mathbb{Z} \,, \end{displaymath} for $n \geq 2$ such that each [[prime factor]] of $n$ is contained in the set of primes $J$; \item the ring cores of product rings \begin{displaymath} c(\mathbb{Z}[J^{-1}] \times \underset{p \in K}{\prod} \mathbb{Z}/p^{e(p)}) \,, \end{displaymath} where $K \subset J$ are infinite sets of primes and $e(p)$ are positive natural numbers. \end{enumerate} \end{theorem} (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, prop. 3.5}, \hyperlink{Bousfield79}{Bousfield 79, p. 276}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} The core of any ring $R$ is solid (def. \ref{CoreOfARing}): \begin{displaymath} c c R \simeq c R \,. \end{displaymath} \end{prop} (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, prop. 2.2}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[nilpotent completion of spectra]] \item [[Adams spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Aldridge Bousfield]], [[Daniel Kan]], \emph{The core of a ring}, Journal of Pure and Applied Algebra, Volume 2, Issue 1, April 1972, Pages 73-81 (\href{http://www.sciencedirect.com/science/article/pii/0022404972900230}{link}) \item [[Aldridge Bousfield]], \emph{The localization of spectra with respect to homology}, Topology 18 (1979), no. 4, 257--281. (\href{http://www.uio.no/studier/emner/matnat/math/MAT9580/v12/undervisningsmateriale/bousfield-topology-1979.pdf}{pdf}) \end{itemize} [[!redirects cores of rings]] [[!redirects solid ring]] [[!redirects solid rings]] \end{document}