\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coring} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{base_ring_extension}{Base ring extension}\dotfill \pageref*{base_ring_extension} \linebreak \noindent\hyperlink{morphisms_of_corings_over_different_bases}{Morphisms of corings over different bases}\dotfill \pageref*{morphisms_of_corings_over_different_bases} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{sweedler_corings}{Sweedler corings}\dotfill \pageref*{sweedler_corings} \linebreak \noindent\hyperlink{matrix_corings}{Matrix corings}\dotfill \pageref*{matrix_corings} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of coring is a generalization of a $k$-[[coalgebra]]. While for a coalgebra $k$ must be a \textbf{commutative} ring (often a [[field]]), a coring is defined over a general noncommutative ring $k$ or even an associative algebra $A$. Whereas a coalgebra structure is defined on a $k$-module (if $k$ is a field, it is a [[vector space]]) -- which may be regarded as a central $k$-[[bimodule]] -- a coring structure is defined on a general bimodule over a general [[ring]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{$A$-coring} is a [[comonoid]] in the [[monoidal category]] of central [[bimodule]]s over a fixed (typically noncommutative) unital [[ring]] $A$. This generalizes the notion of $A$-[[coalgebra]]s which are defined only if $A$ is commutative and where the bimodules in question are [[central bimodule|central]]. \hypertarget{base_ring_extension}{}\subsection*{{Base ring extension}}\label{base_ring_extension} More generally, fix a ground commutative ring $R$. Corings will be now over $R$-algebras. So a coring will mean a pair $(A,C)$ where $A$ is an $R$-algebra and $C$ an $A$-coring. Let $\alpha:A\to B$ be a morphism of rings and $C$ an $A$-coring. Then the $B$-$B$-bimodule $B\otimes_A C\otimes_A B$ has an induced structure of a $B$-coring with comultiplication \begin{displaymath} B\otimes_A C\otimes_A B \stackrel{B\otimes \Delta_C\otimes B}\longrightarrow B\otimes_A C\otimes_A C\otimes_A B \stackrel{B\otimes C\otimes 1_B\otimes C\otimes B}\longrightarrow B\otimes_A C\otimes_A B\otimes_A C\otimes_A B \cong (B\otimes_A C\otimes_A B)\otimes_B (B \otimes_A C\otimes_A B) \end{displaymath} and the counit \begin{displaymath} B\otimes_A C\otimes_A B \stackrel{B\otimes\epsilon_C\otimes B}\longrightarrow B\otimes_A A\otimes_A B \stackrel{B\otimes\phi\otimes B}\longrightarrow B\otimes_A B\otimes_A B \stackrel{mult}\longrightarrow B \end{displaymath} \hypertarget{morphisms_of_corings_over_different_bases}{}\subsection*{{Morphisms of corings over different bases}}\label{morphisms_of_corings_over_different_bases} A morphism $(A,C)\to (B,D)$ is a pair $(\alpha,\gamma)$ where \begin{itemize}% \item $\alpha : A\to B$ is an $R$-algebra morphism; by restriction this makes $D$ an $A$-$A$-bimodule by restriction. Denote also by $p:D\otimes_A D\to D\otimes_B D$ the canonical projection of bimodules induced by $\alpha$. \item $\gamma : C\to D$ is a map of $A$-$A$-bimodules \item $\gamma$ commutes with counit $\alpha \circ \epsilon_C = \epsilon_D\circ \gamma$ \item $p\circ (\gamma\otimes_A\gamma)\circ \Delta_C = \Delta_D\circ \gamma$ \end{itemize} The last two conditions can be said that the base ring extension coring $B\otimes_A C\otimes_A B$ of $C$ maps to $D$ (via map induced by $\gamma$) as a morphism of $B$-corings. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{sweedler_corings}{}\subsubsection*{{Sweedler corings}}\label{sweedler_corings} The classical example of a coring is the [[Sweedler coring]] corresponding to an extension $R\hookrightarrow S$ of unital rings. The category of [[descent]] data for this extension is equivalent to the category of [[comodule]]s over the Sweedler coring. Corings are in general useful for the treatment of [[descent in noncommutative algebraic geometry]]. \hypertarget{matrix_corings}{}\subsubsection*{{Matrix corings}}\label{matrix_corings} Another major class of examples are the so-called [[matrix coring]]s. \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of an $A$-coring is introduced by M. Sweedler and recently lived through a renaissance in works of [[T. Brzeziński]], R. Wisbauer, [[G. Böhm]], L. Kaoutit, G\'o{}mez-Torrecillas, S. Caenepeel, J. Y. Abuhlail, J. Vercruysse and others, including the creation of Galois theory for corings. Some prefer to speak about $A$-[[cocategory|cocategories]]. There is already a monograph: \begin{itemize}% \item [[T. Brzeziński]], R. Wisbauer, \emph{Corings and comodules}, London Math. Soc. Lec. Note Series \textbf{309}, Cambridge 2003. \end{itemize} Special topics: \begin{itemize}% \item [[T. Brzeziński]], \emph{Descent cohomology and corings}, Comm. Algebra 36:1894-1900, 2008, \href{http://arxiv.org/abs/math.RA/0601491}{arxiv:math.RA/0601491} \item L. El Kaoutit, J. Gomez-Torrecillas, \emph{On the set of grouplikes of a coring}, \href{http://arxiv.org/abs/0901.4291}{arxiv/0901.4291} \item [[T. Brzeziński]], \emph{Flat connections and (co)modules}, in: New Techniques in Hopf Algebras and Graded Ring Theory, S Caenepeel and F Van Oystaeyen (eds), Universa Press, Wetteren, 2007 pp. 35-52 \href{http://arxiv.org/abs/math.QA/0608170}{arxiv:math.QA/0608170} \item [[T. Brzeziński]], \emph{The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties}, Algebras and Representation Theory \textbf{5} (2002) 389-410, \href{http://arxiv.org/abs/math.QA/0002105}{math.QA/0002105} \item Lars Kadison, \emph{Depth two and Galois coring}, \href{http://arxiv.org/abs/math.RA/0408155}{math.RA/0408155} \item [[George M. Bergman]], Adam O. Hausknecht, \emph{Cogroups and co-rings in categories of associative rings}, A.M.S. Math. Surveys and Monographs \textbf{45}, ix+388 pp., 1996; ISBN 0-8218-0495-2. \href{http://www.ams.org/mathscinet-getitem?mr=97k:16001}{MR 97k:16001} \href{http://math.berkeley.edu/~gbergman/papers/updates/coalg.html}{errata and updates}. \item [[T. Brzeziński]], L. Kadison, [[R. Wisbauer]], \emph{On coseparable and biseparable corings}, Hopf algebras in noncommutative geometry and physics, 71--87, Lecture Notes in Pure and Appl. Math., 239, Dekker, New York, 2005. \end{itemize} There is a generalization of corings: \begin{itemize}% \item Jawad Y. Abuhlail, \emph{Semicorings and semicomodules}, \href{http://arxiv.org/abs/1303.3924}{arxiv/1303.3924} \end{itemize} category: algebra [[!redirects corings]] [[!redirects semicoring]] \end{document}