\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{correlator as differential form on configuration space of points} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{higher_chernsimons_theory}{Higher Chern-Simons theory}\dotfill \pageref*{higher_chernsimons_theory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[Euclidean field theory]], an alternative to regarding [[propagators]]/[[correlators]] as [[distributions of several variables]] with [[singularities]] on the [[fat diagonal]], is to [[pullback of distributions|pull-back]] these distributions to [[smooth functions]]/[[differential forms]] on ([[Fulton-MacPherson compactifications]] of) [[configuration spaces of points]] and regard them in this incarnation, in particular discuss their [[renormalization]] from this perspective. Analogous to the perspective of [[wavefront sets]] for distributions, this perspective amounts to recording around each potentially singular point an [[n-sphere|(d-1)-sphere]] worth of extra [[direction of a vector|directional]] information carried by the [[correlator]]/[[Feynman amplitude]] in the vicinity of the point. This approach goes back to \hyperlink{AxelrodSinger93}{Axelrod-Singer 93} in the discussion of [[perturbative quantum field theory|perturbative]] [[quantization of Chern-Simons theory]]. Here the [[graph complex]] of \hyperlink{Kontsevich94}{Kontsevich 94} (full details due to \hyperlink{LambrechtsVolic14}{Lambrechts-Volić 14}) shows that the [[de Rham algebra]] of the [[configuration space of points]] is actuall [[quasi-isomorphism|quais-isomorphic]] to all possible [[Feynman amplitudes]] for free [[Chern-Simons theory|Chern-Simons]]/[[AKSZ theory]]. A general and systematic discussion of [[perturbative quantum field theory]] and its [[renormalization]] from this perspective is offered in \hyperlink{Berghoff14a}{Berghoff 14a}, \hyperlink{Berghoff14b}{Berghoff 14b} (albeit presently only for [[Euclidean quantum field theory]], not for [[relativistic quantum field theory]]). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{higher_chernsimons_theory}{}\subsubsection*{{Higher Chern-Simons theory}}\label{higher_chernsimons_theory} This approach to [[pQFT]] was originally considered specifically for the [[Chern-Simons propagator]] in [[quantization of 3d Chern-Simons theory]] in \hyperlink{AxelrodSinger93}{Axelrod-Singer 93}, see also \hyperlink{BottCattaneo97}{Bott-Cattaneo 97, Remark 3.6} and \hyperlink{CattaneoMnev10}{Cattaneo-Mnev 10, Remark 11}. The analysis applies verbatim to [[higher Chern-Simons theory]] such as notably the [[AKSZ sigma-models]], too, since the [[Feynman propagator]] depends only on the [[free field theory]]-[[equations of motion]], which is $d A = 0$ in all these cases. Here the [[Chern-Simons propagator]] regarded as a non-singular [[differential form]] on the [[Fulton-MacPherson compactification|compactification]] of the [[configuration space of points]] serves to exhibit its [[Feynman amplitudes]] as providing [[graph complex]]-models for the [[de Rham cohomology]] of these [[Fulton-MacPherson compactification|compactified]] [[configuration spaces of points]], a point due to \hyperlink{Kontsevich94}{Kontsevich 94}, \hyperlink{Kontsevich93}{Kontsevich 93, 5}: \begin{equation} \underset{ \color{blue} \itexarray{ \phantom{A} \\ \text{graph complex} \\ \text{of n-point Feynman diagrams} \\ \text{for Chern-Simons theory} \\ \text{on} \; \Sigma } }{ Graphs_n(\Sigma) } \underoverset{ \simeq_{\mathrlap{qi}} } { \color{blue} \itexarray{ \text{assign Feynman amplitudes} \\ \text{of Chern-Simons theory} \\ \phantom{A} } } { \longrightarrow } \underset{ \color{blue} \itexarray{ \phantom{A} \\ \text{de Rham algebra} \\ \text{of semi-algebraic differential forms} \\ \text{on the FM-compactification} \\ \text{of the configuration space of n points} \\ \text{in}\; \Sigma } }{ \Omega^\bullet_{PA} \big( Conf_n\big( \Sigma \big) \big) } \,. \label{TheQuasiIsomorphism}\end{equation} \hypertarget{references}{}\subsection*{{References}}\label{references} The approach was originally considered specifically for [[Chern-Simons theory]] in \begin{itemize}% \item [[Scott Axelrod]], [[Isadore Singer]], \emph{Chern--Simons Perturbation Theory II}, J. Diff. Geom. 39 (1994) 173-213 (\href{http://arxiv.org/abs/hep-th/9304087}{arXiv:hep-th/9304087}) \end{itemize} which was re-amplified in \begin{itemize}% \item [[Raoul Bott]], [[Alberto Cattaneo]], Remark 3.6 in \emph{Integral invariants of 3-manifolds}, J. Diff. Geom., 48 (1998) 91-133 (\href{https://arxiv.org/abs/dg-ga/9710001}{arXiv:dg-ga/9710001}) \item [[Alberto Cattaneo]], [[Pavel Mnev]], Remark 11 in \emph{Remarks on Chern-Simons invariants}, Commun.Math.Phys.293:803-836,2010 (\href{https://arxiv.org/abs/0811.2045}{arXiv:0811.2045}) \item [[Alberto Cattaneo]], [[Pavel Mnev]], [[Nicolai Reshetikhin]], appendix B of \emph{Perturbative quantum gauge theories on manifolds with boundary}, Communications in Mathematical Physics, January 2018, Volume 357, Issue 2, pp 631–730 (\href{https://arxiv.org/abs/1507.01221}{arXiv:1507.01221}, \href{https://doi.org/10.1007/s00220-017-3031-6}{doi:10.1007/s00220-017-3031-6}) \end{itemize} and highlighted as a means to obtain [[graph complex]]-models for the [[de Rham cohomology]] of [[configuration spaces of points]] in \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Vassiliev's knot invariants}, Advances in Soviet Mathematics, Volume 16, Part 2, 1993 (\href{http://pagesperso.ihes.fr/~maxim/TEXTS/VassilievKnot.pdf}{pdf}) \item [[Maxim Kontsevich]], pages 11-12 of \emph{Feynman diagrams and low-dimensional topology}, First European Congress of Mathematics, 1992, Paris, vol. II, Progress in Mathematics \textbf{120}, Birkh\"a{}user (1994), 97--121 (\href{http://www.ihes.fr/~maxim/TEXTS/Feynman%20%20diagrams%20and%20low-dimensional%20topology.pdf}{pdf}) \end{itemize} with full details and proofs in \begin{itemize}% \item [[Pascal Lambrechts]], [[Ismar Volić]], sections 6 and 7 of \emph{Formality of the little N-disks operad}, Memoirs of the American Mathematical Society no. 1079, 2014 (\href{https://arxiv.org/abs/0808.0457}{arxiv:0808.0457}, \href{http://dx.doi.org/10.1090/memo/1079}{doi:10.1090/memo/1079}) \end{itemize} see also \begin{itemize}% \item [[Ricardo Campos]], Najib Idrissi, [[Pascal Lambrechts]], [[Thomas Willwacher]], \emph{Configuration Spaces of Manifolds with Boundary} (\href{https://arxiv.org/abs/1802.00716}{arXiv:1802.00716}) \end{itemize} A systematic development of [[Euclidean field theory|Euclidean]] [[perturbative quantum field theory]] with [[n-point functions]] considered as [[smooth functions]] on [[Fulton-MacPherson compactifications]]/[[wonderful compactifications]] of [[configuration spaces of points]] and more generally of subspace arrangements is due to \begin{itemize}% \item [[Christoph Bergbauer]], [[Romeo Brunetti]], [[Dirk Kreimer]], \emph{Renormalization and resolution of singularities}, ESI preprint 2010 (\href{https://arxiv.org/abs/0908.0633}{arXiv:0908.0633}, \href{https://mat.univie.ac.at/~esiprpr/esi2244.pdf}{ESI:2244}) \item [[Christoph Bergbauer]], \emph{Renormalization and resolution of singularities}, talks as IHES and Boston, 2009 (\href{http://www.emg.uni-mainz.de/Dateien/bergbauer.pdf}{pdf}) \item [[Marko Berghoff]], \emph{Wonderful renormalization}, 2014 (\href{http://www2.mathematik.hu-berlin.de/%7Ekreimer/wp-content/uploads/Berghoff-Marko.pdf}{pdf}, \href{https://doi.org/10.18452/17160}{doi:10.18452/17160}) \item [[Marko Berghoff]], \emph{Wonderful compactifications in quantum field theory}, Communications in Number Theory and Physics Volume 9 (2015) Number 3 (\href{https://arxiv.org/abs/1411.5583}{arXiv:1411.5583}) \end{itemize} [[!redirects correlator as differential form on configuration space of points]] [[!redirects correlators as differential forms on configuration space of points]] [[!redirects correlator as differential form on a configuration space of points]] [[!redirects correlator as a differential form on a configuration space of points]] [[!redirects correlators as differential forms on a configuration space of points]] [[!redirects correlators as differential forms on configuration spaces of points]] [[!redirects Feynman amplitudes as differential forms on configuration spaces of points]] [[!redirects Feynman amplitude on compactified configuration space of points]] [[!redirects Feynman amplitude on compactified configuration spaces of points]] [[!redirects Feynman amplitudes on compactified configuration spaces of points]] [[!redirects propagators regarded as differential forms on configuration spaces]] \end{document}