\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cosmological constant} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{InClassicalGravity}{In classical gravity}\dotfill \pageref*{InClassicalGravity} \linebreak \noindent\hyperlink{InPerturbativeQuantumGravity}{In perturbative quantum gravity}\dotfill \pageref*{InPerturbativeQuantumGravity} \linebreak \noindent\hyperlink{InInhomogeneousCosmology}{In inhomogeneous cosmology}\dotfill \pageref*{InInhomogeneousCosmology} \linebreak \noindent\hyperlink{Observation}{Observation}\dotfill \pageref*{Observation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{observation_2}{Observation}\dotfill \pageref*{observation_2} \linebreak \noindent\hyperlink{ReferencedInpAQFT}{In pAQFT}\dotfill \pageref*{ReferencedInpAQFT} \linebreak \noindent\hyperlink{ReferencesFromHigherCurvatureCorrections}{From higher curvature corrections}\dotfill \pageref*{ReferencesFromHigherCurvatureCorrections} \linebreak \noindent\hyperlink{from_inhomogeneous_cosmology}{From inhomogeneous cosmology}\dotfill \pageref*{from_inhomogeneous_cosmology} \linebreak \noindent\hyperlink{CCProblemReferences}{The ``cosmological constant problem''}\dotfill \pageref*{CCProblemReferences} \linebreak \noindent\hyperlink{ReferencesInStringTheory}{In string theory}\dotfill \pageref*{ReferencesInStringTheory} \linebreak \noindent\hyperlink{ReferencesStringTheoryVanishingCC}{For fundamentally vanishing cc (``Witten's Dark Fantasy'')}\dotfill \pageref*{ReferencesStringTheoryVanishingCC} \linebreak \noindent\hyperlink{for_fundamentally_nonvanishing_cc}{For fundamentally non-vanishing cc}\dotfill \pageref*{for_fundamentally_nonvanishing_cc} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In theories of [[gravity]] and [[cosmology]] a \emph{cosmological constant} refers to an [[energy]] contribution associated with the [[vacuum]] itself. This is called a \emph{cosmological constant} because the simplest way to see this effect in [[theory (physics)|theory]] is by a summand to the [[Einstein-Hilbert action]] which is proportional to the [[volume]] of [[spacetime]], with proportionality factor some ``constant'' $\lambda$, as in \eqref{EinsteinHilbertWithCosmologicalConstant} below. See below \begin{itemize}% \item \emph{\hyperlink{InClassicalGravity}{In classical gravity}} \end{itemize} More generally, almost-constant contributions to matter fields may effectively have the same kind of effect. Specifically in [[perturbative quantum field theory]] [[AQFT on curved spacetimes|on curved spacetimes]] the [[vacuum expectation value]] of the [[stress-energy tensor]] of the various [[matter]]-fields receives constant or essentially constant contributions, notably from [[renormalization]] freedom (e.g. \hyperlink{Hack15}{Hack 15, section 3.2.1}). See below \begin{itemize}% \item \emph{\hyperlink{InPerturbativeQuantumGravity}{In perturbative quantum gravity}} \end{itemize} In [[perturbative string theory]] the [[string perturbation series]] associated with a [[2d SCFT]] is (supposedly) UV-finite and hence has ``chosen its own [[renormalization]]'' already, hence here the cosmological constant may in principle be read off from a choice of [[perturbative string theory vacuum]]. See below \begin{itemize}% \item \emph{\hyperlink{ReferencesInStringTheory}{In string theory}} \end{itemize} Observation shows that the effective cosmological constant of the [[observable universe]] is comparatively small but [[positive real number|positive]], see \begin{itemize}% \item \emph{\hyperlink{Observation}{Observation}}. \end{itemize} \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{InClassicalGravity}{}\subsubsection*{{In classical gravity}}\label{InClassicalGravity} In an [[action functional]] on a space of [[pseudo-Riemannian manifolds]] -- such as the [[Einstein-Hilbert action]] functional for [[gravity]] -- a \textbf{cosmological constant} is a term proportional to the [[volume]] \begin{displaymath} S_{cc} \;\colon\; (X,g) \mapsto \lambda \int_X dvol_g \,, \end{displaymath} where $\lambda \in \mathbb{R}$ is the \emph{cosmological constant} . For instance, pure Einstein-Hilbert gravity with cosmological constant (and no other fields) is given by the functional \begin{equation} S_{EH} + S_{cc} : (X,g) \mapsto \int_X R\, dvol + \lambda \int_X d vol_g \,, \label{EinsteinHilbertWithCosmologicalConstant}\end{equation} Generically it happens that one considers action functionals where $\lambda$ is in fact not a constant, but a function of other fields $\phi$ on $X$. \begin{displaymath} S \;\colon\; (X,g,\phi) \mapsto \int_X \lambda(\phi) dvol_g \,. \end{displaymath} In this context those solutions to the [[Euler-Lagrange equation]]s are of interest in which $\lambda(\phi)$ happens to be exactly or approximately constant. Many such models of not-really-constant-but-effectively-constant terms proportional to the volume are being proposed and considered in attempts to explain observed or speculated dynamics of the cosmos. See in particular at \emph{[[FRW model]]} for the role of the cosmological constant in homogeneous and isotropic models as in the [[standard model of cosmology]]. In that context the cosmological constant is also called the \emph{dark energy} (density), which makes up about 70\% of the energy density of the [[observable universe]] (the rest being [[dark matter]]) and a comparatively little bit of [[baryon|baryonic]] [[matter]]. \hypertarget{InPerturbativeQuantumGravity}{}\subsubsection*{{In perturbative quantum gravity}}\label{InPerturbativeQuantumGravity} In [[perturbative quantum field theory]] [[QFT on curved spacetime|on curved spacetimes]] the cosmological constant receives contributions from the [[vacuum expectation value]] of the [[stress-energy tensor]] of the [[matter]] [[field (physics)|fields]]. There is [[renormalization]]-freedom in this contribution (\hyperlink{Wald78}{Wald 78}, \hyperlink{TichyFlanagan98}{Tichy-Flanagan 98} \hyperlink{Moretti01}{Moretti 01}). Explicitly for [[FRW models]] this is discussed in (\hyperlink{DappiaggiFredenhagenPinamonti08}{Dappiaggi-Fredenhagen-Pinamonti 08}, \hyperlink{DappiagiHackMollerPinamonti10}{Dappiagi-Hack-Moeller-Pinamonti 10}). Specifically for the [[standard model of cosmology]] see (\hyperlink{Hack13}{Hack 13, around (4)}). A useful review is in (\hyperlink{Hack15}{Hack 15, section 3.2.1}). This means that apart from the freedom of choosing a classical comsological constant in the [[Einstein-Hilbert action]] as above, its \href{A+first+idea+of+quantum+field+theory#InteractingQuantumFields}{perturbative quantization} ([[perturbative quantum gravity]]) introduces [[renormalization]] freedom to the value of the cosmological constant. The folklore discussion of the ``cosmological constant problem'' (see the references \hyperlink{CCProblemReferences}{below}) tends not to take this freedom in the theory into account (see the discussion at \emph{[[naturalness]]}). \hypertarget{InInhomogeneousCosmology}{}\subsubsection*{{In inhomogeneous cosmology}}\label{InInhomogeneousCosmology} It has been suggested the observed cosmological constant/dark energy may be but an artifact of the overly idealistic approximation of cosmic homogeneity, and that a more accurate [[inhomogeneous cosmology]] would not need to assume any dark energy (e.g. \hyperlink{Buchert07}{Buchert 07}, \hyperlink{Buchert11}{Buchert 11}, \hyperlink{BucherRasanen11}{Buchert-Rasanen 11}, \hyperlink{Scharf13}{Scharf 13}). A seminal argument that it \emph{is} consistent to neglect cosmic inhomogeneity due to (\hyperlink{GreenWald10}{Green-Wald 10}, \hyperlink{GreenWald13}{Green-Wald 13}), has been called into question in \hyperlink{BuchertEtAl15}{Buchert et al. 15}, where it is concluded that the question is more subtle and remains open. Recent review is in \hyperlink{BelejkoKorzynski16}{Belejko-Korzyński 16}. If the apparent small positive [[cosmological constant]] were but an artifact of neglecting backreaction of inhomegeneities, some theoretical puzzlements regarding [[quantum gravity]] on [[de Sitter spacetimes]] would disappear (see \href{de+Sitter+spacetime#Rajaraman16}{Rajaraman 16} for general discussion and \hyperlink{DanielssonVanRiet18}{Danielsson-VanRiet 18, p. 27} for discussion of [[perturbative string theory vacua]]). \hypertarget{Observation}{}\subsubsection*{{Observation}}\label{Observation} (e.g. \hyperlink{Einasto09}{Einasto 09, fig 17}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[FRW model]] \item [[cosmology]] \item [[energy]] \begin{itemize}% \item [[matter]], [[radiation]], \textbf{cosmological constant} \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{observation_2}{}\subsubsection*{{Observation}}\label{observation_2} Cautioning against the interpretation of type Ia [[supernovae]] as indicative of a small positive cosmoplogical constant ([[de Sitter spacetime]]) as in the current [[standard model of cosmology]] includes the following (see also at [[inhomogeneous cosmology]]): \begin{itemize}% \item [[Subir Sarkar]], \emph{Is the evidence for dark energy secure?}, Gen. Rel. Grav. 40:269-284, 2008 (\href{https://arxiv.org/abs/0710.5307}{arXiv:0710.5307}) \item J. T. Nielsen, A. Guffanti \& [[Subir Sarkar]], \emph{Marginal evidence for cosmic acceleration from Type Ia supernovae}, Nature Scientific Reports volume 6, Article number: 35596 (2016) (\href{https://arxiv.org/abs/1506.01354}{arXiv:1506.01354}, \href{https://4gravitons.wordpress.com/2016/11/11/a-response-from-nielsen-guffanti-and-sarkar/}{web discussion}) \item Koushik Dutta, Ruchika, Anirban Roy, Anjan A. Sen, M.M. Sheikh-Jabbari, \emph{Negative Cosmological Constant is Consistent with Cosmological Data} (\href{https://arxiv.org/abs/1808.06623}{arXiv:1808.06623}) \item Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, \emph{Can the $H_0$ tension be resolved in extensions to ΛCDM cosmology?} (\href{https://arxiv.org/abs/1809.02340}{arXiv:1809.02340}) \end{itemize} \hypertarget{ReferencedInpAQFT}{}\subsubsection*{{In pAQFT}}\label{ReferencedInpAQFT} Discussion of the cosmological constant in the rigorous formulation of [[perturbative AQFT]] [[AQFT on curved spacetimes|on curved spacetimes]] includes the following. The freedom of [[renormalization]] of the [[vacuum expectation value]] of any [[stress-energy tensor]], hence of the cosmological constant, was discussed in \begin{itemize}% \item [[Robert Wald]], \emph{Trace anomaly of a conformally invariant quantum field in curved spacetime}, Phys. Rev. D 17, 1477 1978 (\href{https://doi.org/10.1103/PhysRevD.17.1477}{doi:10.1103/PhysRevD.17.1477}) \end{itemize} Notice that (\hyperlink{Wald78}{Wald 78}) is based on \begin{itemize}% \item [[Robert Wald]], \emph{The back reaction effect in particle creation in curved spacetime}, Commun. Math. Phys. (1977) 54: 1. (\href{https://doi.org/10.1007/BF01609833}{doi:10.1007/BF01609833}) \end{itemize} which claimed \emph{no} freedom of renormalization, but \hyperlink{Wald78}{Wald 78} explains that this was due to a mistake inherited from a citation. Further development of this includes \begin{itemize}% \item Wolfgang Tichy, Eanna E. Flanagan, \emph{How unique is the expected stress-energy tensor of a massive scalar field?}, Phys.Rev. D58 (1998) 124007 (\href{https://arxiv.org/abs/gr-qc/9807015}{arXiv:gr-qc/9807015}) \item [[Valter Moretti]], \emph{Comments on the Stress-Energy Tensor Operator in Curved Spacetime}, Commun. Math. Phys. 232 (2003) 189-221 (\href{https://arxiv.org/abs/gr-qc/0109048}{arXiv:gr-qc/0109048}) \end{itemize} A useful review is in \begin{itemize}% \item [[Thomas-Paul Hack]], section 3.2.1, \emph{Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes}, Springer 2016 (\href{https://arxiv.org/abs/1506.01869}{arXiv:1506.01869}, \href{https://doi.org/10.1007/978-3-319-21894-6}{doi:10.1007/978-3-319-21894-6}) \end{itemize} Realization of renormalization of stress-energy/cosmological constant in concrete [[FRW models]] is discussed in \begin{itemize}% \item [[Claudio Dappiaggi]], [[Klaus Fredenhagen]], [[Nicola Pinamonti]], \emph{Stable cosmological models driven by a free quantum scalar field}, Phys. Rev. D77:104015, 2008 (\href{https://arxiv.org/abs/0801.2850}{arXiv:0801.2850}) \item [[Claudio Dappiaggi]], [[Thomas-Paul Hack]], Jan Möller, [[Nicola Pinamonti]], \emph{Dark Energy from Quantum Matter} (\href{https://arxiv.org/abs/1007.5009}{arXiv:1007.5009}) \end{itemize} Discussion specifically for the [[standard model of cosmology]] is in \begin{itemize}% \item [[Thomas-Paul Hack]], \emph{The Lambda CDM-model in quantum field theory on curved spacetime and Dark Radiation} (\href{https://arxiv.org/abs/1306.3074}{arXiv:1306.3074}) \end{itemize} \hypertarget{ReferencesFromHigherCurvatureCorrections}{}\subsubsection*{{From higher curvature corrections}}\label{ReferencesFromHigherCurvatureCorrections} Effective dark energy from [[higher curvature corrections]], as in the [[Starobinsky model of cosmic inflation]]: \begin{itemize}% \item Michal Artymowski, Zygmunt Lalak, \emph{Inflation and dark energy from $f(R)$ gravity}, JCAP09(2014)036 (\href{https://arxiv.org/abs/1405.7818}{arXiv:1405.7818}) \item Michal Artymowski, Zygmunt Lalak, Marek Lewicki, \emph{Inflation and dark energy from $f(R)$ gravity} (\href{https://arxiv.org/abs/1510.04864}{arXiv:1510.04864}) \end{itemize} \hypertarget{from_inhomogeneous_cosmology}{}\subsubsection*{{From inhomogeneous cosmology}}\label{from_inhomogeneous_cosmology} Discussion of the cosmological constant as an artefact of [[inhomogeneous cosmology]] (see there for more) includes the following \begin{itemize}% \item [[Thomas Buchert]], \emph{Dark Energy from structure: a status report}, Gen.Rel.Grav.40:467-527, 2008 (\href{http://xxx.lanl.gov/abs/0707.2153}{arXiv:0707.2153}) \item Stephen R. Green, [[Robert Wald]], \emph{A new framework for analyzing the effects of small scale inhomogeneities in cosmology}, Phys.Rev.D83:084020, 2011 (\href{https://arxiv.org/abs/1011.4920}{arXiv:1011.4920}) \item [[Thomas Buchert]], \emph{Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects}, Class.Quant.Grav.28:164007, 2011 (\href{https://arxiv.org/abs/1103.2016}{arXiv:1103.2016}) \item [[Thomas Buchert]], Syksy Rasanen, \emph{Backreaction in late-time cosmology}, Annual Review of Nuclear and Particle Science 62 (2012) 57-79 (\href{https://arxiv.org/abs/1112.5335}{arXiv:1112.5335}) \item Stephen Green, [[Robert Wald]], \emph{Examples of backreaction of small scale inhomogeneities in cosmology}, Phys.Rev.D87:124037, 2013 (\href{https://arxiv.org/abs/1304.2318}{arxiv:1304.2318}) \item [[Günter Scharf]], \emph{Inhomogeneous cosmology in the cosmic rest frame without dark stuff}, chapter 6 in the latest edition of \emph{[[Quantum Gauge Theories -- A True Ghost Story]]}, Wiley 2001 (\href{https://arxiv.org/abs/1312.2695}{arXiv:1312.2695}) \item [[Thomas Buchert]] et. al, \emph{Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?}, Class. Quantum Grav. 32 215021, 2015 (\href{https://arxiv.org/abs/1505.07800}{arXiv:1505.07800}) exposition in \emph{\href{https://cqgplus.com/2016/01/20/the-universe-is-inhomogeneous-does-it-matter/}{The Universe is inhomogeneous. Does it matter?}} CQG+, 2016 \item Krzysztof Bolejko, Mikołaj Korzyński, \emph{Inhomogeneous cosmology and backreaction: Current status and future prospects}, Int. J. Mod. Phys. D 26, 1730011 (2017) (\href{https://arxiv.org/abs/1612.08222}{arXiv:1612.08222}) \item [[Ulf Danielsson]], Thomas Van Riet, \emph{What if string theory has no de Sitter vacua?} (\href{https://arxiv.org/abs/1804.01120}{arXiv:1804.01120}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Inhomogeneous_cosmology}{Inhomogeneous cosmology}} \end{itemize} \hypertarget{CCProblemReferences}{}\subsubsection*{{The ``cosmological constant problem''}}\label{CCProblemReferences} Discussion of the experimentally observed tiny cosmological constant and the folklore theoretical problem with that includes the following \begin{itemize}% \item Subir Sarkar, \emph{New results in cosmology} (\href{https://arxiv.org/abs/hep-ph/0201140}{arXiv:hep-ph/0201140}) \item Stefanus Nobbenhuis, \emph{The cosmological constant problem -- an inspiration for new physics} PhD thesis (2006) (\href{http://igitur-archive.library.uu.nl/dissertations/2006-0615-200938/}{web} \href{http://igitur-archive.library.uu.nl/dissertations/2006-0615-200938/c1.pdf}{pdf}) \item Joan Sola, \emph{Cosmological constant and vacuum energy: old and new ideas}, J.Phys.Conf.Ser. 453 (2013) 012015 (\href{https://arxiv.org/abs/1306.1527}{arXiv:1306.1527}) \item Jaan Einasto, \emph{Dark matter} (\href{https://arxiv.org/abs/0901.0632}{arXiv:0901.0632}) 2009 \end{itemize} \hypertarget{ReferencesInStringTheory}{}\subsubsection*{{In string theory}}\label{ReferencesInStringTheory} Discussion from the point of view of [[perturbative string theory]], where the cosmological constant is fixed by the choice of [[perturbative string theory vacuum]]. \hypertarget{ReferencesStringTheoryVanishingCC}{}\paragraph*{{For fundamentally vanishing cc (``Witten's Dark Fantasy'')}}\label{ReferencesStringTheoryVanishingCC} An argument for [[non-perturbative effect|non-perturbative]] non-[[supersymmetry|supersymmetric]] 4d [[string phenomenology]] with fundamentally vanishing [[cosmological constant]], based on 3d [[M-theory on 8-manifolds]] decompactified at strong coupling to 4d via [[duality between M-theory and type IIA string theory]] (recall the [[super 2-brane in 4d]]): \begin{itemize}% \item [[Edward Witten]], \emph{The Cosmological Constant From The Viewpoint Of String Theory}, lecture at \href{http://inspirehep.net/record/972507}{DM2000} (\href{https://arxiv.org/abs/hep-ph/0002297}{arXiv:hep-ph/0002297}) (see p. 7) \item [[Edward Witten]], \emph{Strong coupling and the cosmological constant}, Mod. Phys. Lett. A 10:2153-2156, 1995 (\href{https://arxiv.org/abs/hep-th/9506101}{arXiv:hep-th/9506101}) \item [[Edward Witten]], Section 3 of \emph{Some Comments On String Dynamics}, talk at \href{https://cds.cern.ch/record/305869}{Strings95} (\href{http://arxiv.org/abs/hep-th/9507121}{arXiv:hep-th/9507121}) \end{itemize} This suggestion was called \emph{Witten's Dark Fantasy} in \hyperlink{HeckmannLawrieLinZoccarato19}{Heckmann-Lawrie-Lin-Zoccarato 19, Section 8}, where a concrete realization of this scenario in [[F-theory]] is claimed: \begin{itemize}% \item [[Cumrun Vafa]], Section 4.3 of: \emph{Evidence for F-Theory}, Nucl. Phys. B469:403-418, 1996 (\href{https://arxiv.org/abs/hep-th/9602022}{arxiv:hep-th/9602022}) \item [[Jonathan Heckman]], Craig Lawrie, Ling Lin, Gianluca Zoccarato, \emph{F-theory and Dark Energy}, Fortschritte der Physik (\href{https://arxiv.org/abs/1811.01959}{arXiv:1811.01959}, \href{https://doi.org/10.1002/prop.201900057}{doi:10.1002/prop.201900057}) \item [[Jonathan Heckman]], Craig Lawrie, Ling Lin, Jeremy Sakstein, Gianluca Zoccarato, \emph{Pixelated Dark Energy} (\href{https://arxiv.org/abs/1901.10489}{arXiv:1901.10489}) \end{itemize} \hypertarget{for_fundamentally_nonvanishing_cc}{}\paragraph*{{For fundamentally non-vanishing cc}}\label{for_fundamentally_nonvanishing_cc} But a) there might be a large space of [[perturbative string theory vacua]] and b) the [[de Sitter spacetime|de Sitter vacua]] that seem to correspond to observation tend to exist (only) as metastable vacua: \begin{itemize}% \item [[Shamit Kachru]], [[Renata Kallosh]], [[Andrei Linde]], [[Sandip Trivedi]], \emph{de Sitter Vacua in String Theory}, Phys.Rev.D68:046005, 2003 (\href{https://arxiv.org/abs/hep-th/0301240}{arXiv:hep-th/0301240}) \end{itemize} This observation led to the discussion of the ``[[landscape of string theory vacua]]''. For review see \begin{itemize}% \item [[Renata Kallosh]], section 3 of \emph{de Sitter vacua and the landscape of string theory}, J. Phys. Conf. Ser. 24 (2005) 87-110 (\href{http://inspirehep.net/record/701033/}{spire}) \end{itemize} However, consistency problems of these arguments are raised in \begin{itemize}% \item [[Ulf Danielsson]], Thomas Van Riet, \emph{What if string theory has no de Sitter vacua?} (\href{https://arxiv.org/abs/1804.01120}{arXiv:1804.01120}) \end{itemize} [[!redirects dark energy]] \end{document}