\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cospan cotrace} [[!redirects co-span co-trace]] \hypertarget{idea}{}\section*{{Idea}}\label{idea} One can naturally think of a [[cospan]] as the abstraction of a [[cobordism]]. For instance an [[interval object]] cospan models the standard topological interval $[0,1]$ regarded as a cobordism from pt to pt. The \emph{cospan cotrace} on the interval glues the two ends of the interval together to produce a \emph{circle} regarded as a cospan from $\emptyset$ to itself. The [[duality|concrete dual]] of a cospan, obtained by mapping it into some target object, is a [[span]], which in the context of [[groupoidification]] and [[geometric function theory]] can be interpreted as a generalized linear map. On such a generalized linear map, there is a notion of \emph{trace}, the [[span trace]]. The \emph{cospan cotrace} is the concept dual to that: the image of the cotrace of a cospan under mapping it into a target object is the span trace of the result of mapping the original cospan to that target object. \hypertarget{definition}{}\section*{{Definition}}\label{definition} For \begin{displaymath} \itexarray{ && T \\ & {}^{in}\nearrow && \nwarrow^{out} \\ \Sigma &&&& \Sigma } \end{displaymath} a [[cospan]] with identical left and right index object $\Sigma$, its \textbf{cospan cotrace} $cotr(T)$ is the composite of the result \begin{displaymath} \itexarray{ && T \\ & {}^{in \sqcup out}\nearrow && \nwarrow \\ \Sigma \sqcup \Sigma &&&& \emptyset } \end{displaymath} of dualizing one leg of the cospan with the cospan \begin{displaymath} \itexarray{ && \Sigma \\ & {}^{}\nearrow && \nwarrow^{Id \sqcup Id} \\ \emptyset &&&& \Sigma \sqcup \Sigma } \end{displaymath} i.e. the [[pushout]] \begin{displaymath} \itexarray{ &&&& \mathrm{cotr}T \\ &&& \nearrow && \nwarrow \\ && \Sigma &&&& T \\ & {}^{}\nearrow && \nwarrow^{Id \sqcup Id} && {}^{in \sqcup out}\nearrow && \nwarrow \\ \emptyset &&&& \Sigma \sqcup \Sigma &&&& \emptyset } \end{displaymath} regarded as a cospan from the initial object $\emptyset$ to $\emptyset$ \begin{displaymath} \itexarray{ && cotr(T) \\ & {}^{}\nearrow && \nwarrow \\ \emptyset &&&& \emptyset } \,. \end{displaymath} \hypertarget{definition_for_multicospans}{}\subsection*{{Definition for multi-cospans}}\label{definition_for_multicospans} More generally, the trace of a [[multi-cospan]] over $n$ identical of its index objects $\Sigma$ is the composite with the multi-cospan \begin{displaymath} \itexarray{ & \Sigma \\ & {}^{Id}\nearrow \uparrow^{Id} & \cdots \\ \Sigma & \Sigma & \cdots & \Sigma & \cdots } \end{displaymath} \hypertarget{examples}{}\section*{{Examples}}\label{examples} \hypertarget{cotracing_topological_interval_to_circle}{}\subsection*{{Cotracing topological interval to circle}}\label{cotracing_topological_interval_to_circle} Let the ambient category be [[Top]], let $I = [0,1]$ be the standard topological interval and let $e := [0,\epsilon]$ be a small interval, for some $0 \lt \epsilon \lt 1/2$ -- to be thought here as a \emph{[[collar]]} of the point $pt$. Let \begin{displaymath} \itexarray{ && I \\ & {}\nearrow && \nwarrow^{1-\epsilon+(-)} \\ e &&&& e } \end{displaymath} be the interval regarded as a collared cobordisms from the point to the point. Its cotrace, the pushout \begin{displaymath} \itexarray{ cotr(I) &\leftarrow& I \\ \uparrow && \uparrow^{in \sqcup out} \\ e &\stackrel{Id \sqcup Id}{\leftarrow}& e \sqcup e } \end{displaymath} is the result of gluing the ends of the interval to each other, i.e. the circle \begin{displaymath} cotr(I) = S^1 \,. \end{displaymath} [[Urs Schreiber|Urs]]: This may require a bit more care with the topology involved. I still need to check the reference below for more details. See also \begin{itemize}% \item Marco Grandis, \emph{Collared cospans, cohomotopy and TQFT (Cospans in Algebraic Topology II)} (\href{http://www.dima.unige.it/~grandis/wCub2.pdf}{pdf}) \end{itemize} \hypertarget{cotracing_category_interval_object_to_the_natural_numbers}{}\subsection*{{Cotracing category interval object to the natural numbers}}\label{cotracing_category_interval_object_to_the_natural_numbers} Let the ambient category be [[Cat]], let $I = \{a \to b\}$ be the standard [[interval object]] in [[Cat]] and let $pt = \{\bullet\}$ be the terminal category. Let \begin{displaymath} \itexarray{ && I \\ & {}^{pt \mapsto a}\nearrow && \nwarrow^{pt \mapsto b} \\ pt &&&& pt } \end{displaymath} be the standard [[interval object]] in [[Cat]] regarded in the standard way as a cospan from the point to the point. Dualizing it to \begin{displaymath} \itexarray{ && I \\ & {}^{in \sqcup out}\nearrow && \nwarrow^{} \\ pt \sqcup pt &&&& \emptyset } \end{displaymath} corresponds to thinking of it as a ``bent interval'' \begin{displaymath} \itexarray{ pt \\ & \searrow \\ && \downarrow \\ & \swarrow \\ pt } \,. \end{displaymath} Accordingly, the co-span \begin{displaymath} \itexarray{ && pt \\ & {}^{}\nearrow && \nwarrow^{Id \sqcup Id} \\ \emptyset &&&& pt \sqcup pt } \end{displaymath} can be thought of as \begin{displaymath} \itexarray{ & pt \\ \nearrow \\ \nwarrow \\ & pt } \,. \end{displaymath} Gluing these two arcs together yields the cotrace, the pushout \begin{displaymath} \itexarray{ cotr(I) &\leftarrow& I \\ \uparrow && \uparrow^{in \sqcup out} \\ pt &\stackrel{Id \sqcup Id}{\leftarrow}& pt \sqcup pt } \,, \end{displaymath} which is the result of gluing the ends of the interval object to each other, which here is the [[skeleton]] of the [[fundamental category]] of the [[directed space|directed circle]] \begin{displaymath} \itexarray{ && \rightarrow \\ & \nearrow && \searrow \\ \uparrow &&&& \downarrow \\ & \nwarrow && \swarrow \\ && \leftarrow } \,, \end{displaymath} namely the [[monoid]] of natural numbers, regarded as a one-object category: \begin{displaymath} cotr(I) = \mathbf{B} \mathbb{N} = \{\bullet \stackrel{n}{\to} \bullet | n \in \mathbb{N}\} \,. \end{displaymath} If instead we start with the standard interval object in groupoids, $I_{inv} = \{a \stackrel{\simeq}{\to} b\}$ with the nontrivial morphism from $a$ to $b$ being an [[isomorphism]], then the co-trace in question is the [[skeleton]] of the [[fundamental groupoid]] of the ordinary [[topological space|topological circle]] \begin{displaymath} cotr(I_{inv}) = \mathbf{B} \mathbb{Z} = \{\bullet \stackrel{n}{\to} \bullet | n \in \mathbb{Z}\} \,. \end{displaymath} \hypertarget{remarks}{}\section*{{Remarks}}\label{remarks} \begin{itemize}% \item The dual notion is that of [[span trace]] \end{itemize} \hypertarget{references}{}\section*{{References}}\label{references} While the concept is obvious, it is apparently (?) not discussed yet in the (young) literature on the subject. On the blog the concept was mentioned in \begin{itemize}% \item Urs Schreiber, \href{http://golem.ph.utexas.edu/category/2008/05/hopkinslurie_on_baezdolan.html#c021537}{(co)-traces} \end{itemize} \end{document}