\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cotensor product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_tensor_product}{Relation to tensor product}\dotfill \pageref*{relation_to_tensor_product} \linebreak \noindent\hyperlink{ForComodulesOverCommutativeHopfCoalgebroids}{For comodules over commutative Hopf coalgebroids}\dotfill \pageref*{ForComodulesOverCommutativeHopfCoalgebroids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[monoidal category]] $\mathcal{M}$ and a [[coalgebra]] $C$ in $\mathcal{M}$ denote by $\mathcal{M}^{C}$ ($resp. {}^{C}\mathcal{M}$) the category of right (resp. left) ${C}$-[[comodules]]; similarly for an algebra $E$, denote by ${}_E\mathcal{M}$ (resp. $\mathcal{M}_E$) the [[category of modules|category of left E-modules]] (right $E$-modules). If the monoidal category is [[symmetric monoidal category|symmetric]] or there is instead an appropriate [[distributive law]], then there are extensions of this notation to [[bimodules]], [[bicomodules]], relative [[Hopf modules]], entwined modules etc. e.g. Write ${}_E\mathcal{M}^B$ for left-right relative $(E,B)$-Hopf modules where $E$ is a $B$-comodule algebra over a bialgebra $B$. Let $k$ be a commutative unital [[ring]], and let $\mathcal{M}$ be $k$-linear (in particular it has [[zero morphisms]]). \begin{defn} \label{}\hypertarget{}{} Given a [[coalgebra]] $C$ in $\mathcal{M}$, a left $C$-[[comodule]] $(N,\rho_N \colon N\to N\otimes C)$, a right $C$-comodule $(M,\rho_M \colon M\to C\otimes M)$, their \textbf{cotensor product} is an object in $\mathcal{M}$ given by the [[kernel]] \begin{displaymath} N \Box M \coloneqq \mathrm{ker} (\rho_N \otimes \mathrm{id}_M - \mathrm{id}_N \otimes \rho_M ). \end{displaymath} \end{defn} If [[equalizers]] exist in $\mathcal{M}$, this formula extends to a [[bifunctor]] \begin{displaymath} {}\Box = \Box^{C} \colon \mathcal{M}^{C} \times {}^{C}\mathcal{M} \rightarrow \mathcal{M} \,. \end{displaymath} If $B$ is a [[bialgebra]] in $\mathcal{M}$ and $E$ is a right $B$-comodule algebra then the same formula defines a bifunctor \begin{displaymath} \Box \colon {}_{E}\mathcal{M}^{B} \times {}^{B}\mathcal{M} \rightarrow {}_{E}\mathcal{M} \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_tensor_product}{}\subsubsection*{{Relation to tensor product}}\label{relation_to_tensor_product} Let now $\mathcal{M}=({}_k\mathrm{Mod},\otimes_k)$ be the symmetric monoidal category of $k$-modules. Let $D$ be another $k$-coalgebra, with coproduct $\Delta_C$. If $D$ is [[flat module|flat]] as a $k$-module (e.g. $k$ is a field), and $N$ a left $D$- right $C$-bicomodule, then the cotensor product $N \Box M$ is a $D$-subcomodule of the [[tensor product]] $N \otimes_k M$. In particular, under the flatness assumption, if $\pi \colon D \rightarrow C$ is a surjection of coalgebras then $D$ is a left $D$- right $C$-bicomodule via $\Delta_D$ and $(\id \otimes \pi) \circ \Delta_D$ respectively, hence $\mathrm{Ind}^D_C \coloneqq D \Box^C -$ is a functor from left $C$- to left $D$-comodules called the [[induced comodule|induction]] functor for left comodules from $C$ to $D$. \hypertarget{ForComodulesOverCommutativeHopfCoalgebroids}{}\subsubsection*{{For comodules over commutative Hopf coalgebroids}}\label{ForComodulesOverCommutativeHopfCoalgebroids} \begin{prop} \label{LeftComodulesToRightComodules}\hypertarget{LeftComodulesToRightComodules}{} Consider a [[commutative Hopf algebroid]] $\Gamma$ over $A$ (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidDefinitionInExplicitComponents}{def.}). Any left comodule $N$ over $\Gamma$ (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidComodule}{def.}) becomes a right comodule via the coaction \begin{displaymath} N \overset{\Psi}{\longrightarrow} \Gamma \otimes_A N \overset{\simeq}{\longrightarrow} N \otimes_A \Gamma \overset{id \otimes_A c}{\longrightarrow} N \otimes_A \Gamma \,, \end{displaymath} where the isomorphism in the middle the is [[braiding]] in $A Mod$ and where $c$ is the conjugation map of $\Gamma$. Dually, a right comodule $N$ becoomes a left comodule with the coaction \begin{displaymath} N \overset{\Psi}{\longrightarrow} N \otimes_A \Gamma \overset{\simeq}{\longrightarrow} \Gamma \otimes_A N \overset{c \otimes_A id}{\longrightarrow} \Gamma \otimes_A N \,. \end{displaymath} \end{prop} \begin{defn} \label{CotensorProductOfComodules}\hypertarget{CotensorProductOfComodules}{} Given a [[commutative Hopf algebroid]] $\Gamma$ over $A$, (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidDefinitionInExplicitComponents}{def.}), and given $N_1$ a right $\Gamma$-comodule and $N_2$ a left comodule (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidComodule}{def.}), then their \textbf{cotensor product} $N_1 \Box_\Gamma N_2$ is the [[kernel]] of the difference of the two coaction morphisms: \begin{displaymath} N_1 \Box_\Gamma N_2 \;\coloneqq\; ker \left( N_1 \otimes_A N_2 \overset{\Psi_{N_1}\otimes_{A} id - id \otimes_A \Psi_{N_2} }{\longrightarrow} \right) \,. \end{displaymath} If both $N_1$ and $N_2$ are left comodules, then their cotensor product is the cotensor product of $N_2$ with $N_1$ regarded as a right comodule via prop. \ref{LeftComodulesToRightComodules}. \end{defn} e.g. (\hyperlink{Ravenel86}{Ravenel 86, def. A1.1.4}). \begin{example} \label{PrimitiveElementInAComodule}\hypertarget{PrimitiveElementInAComodule}{} Given a [[commutative Hopf algebroid]] $\Gamma$ over $A$, (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidDefinitionInExplicitComponents}{def.}), and given $N$ a left $\Gamma$-comodule (\href{commutative+Hopf+algebroid#CommutativeHopfAlgebroidComodule}{def.}). Regard $A$ itself canonically as a right $\Gamma$-comodule Then the cotensor product \begin{displaymath} Prim(N) \coloneqq A \Box_\Gamma N \end{displaymath} is called the \textbf{[[primitive elements]]} of $N$: \begin{displaymath} Prim(N) = \{ n \in N \;\vert\; \Psi_N(n) = 1 \otimes n \} \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} Given a [[commutative Hopf algebroid]] $\Gamma$ over $A$, and given $N_1, N_2$ two left $\Gamma$-comodules , then their [[cotensor product]] (def. \ref{CotensorProductOfComodules}) is commutative, in that there is an [[isomorphism]] \begin{displaymath} N_1 \Box N_2 \;\simeq\; N_2 \Box N_1 \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Ravenel86}{Ravenel 86, prop. A1.1.5}) \begin{lemma} \label{ComoduleHomInTermsOfCotensorProduct}\hypertarget{ComoduleHomInTermsOfCotensorProduct}{} Given a [[commutative Hopf algebroid]] $\Gamma$ over $A$, and given $N_1, N_2$ two left $\Gamma$-comodules, such that $N_1$ is [[projective module|projective]] as an $A$-[[module]], then \begin{enumerate}% \item The morphism \begin{displaymath} Hom_A(N_1, A) \overset{f \mapsto (id \otimes_A f) \circ \Psi_{N_1}}{\longrightarrow} Hom_A(N_1, \Gamma \otimes_A A) \simeq Hom_A(N_1, \Gamma) \simeq Hom_A(N_1, A) \otimes_A \Gamma \end{displaymath} gives $Hom_A(N_1,A)$ the structure of a right $\Gamma$-comodule; \item The [[cotensor product]] (def. \ref{CotensorProductOfComodules}) with respect to this right comodule structure is isomorphic to the hom of $\Gamma$-comodules: \begin{displaymath} Hom_A(N_1, A) \Box_\Gamma N_2 \simeq Hom_\Gamma(N_1, N_2) \,. \end{displaymath} Hence in particular \begin{displaymath} A \Box_\Gamma N_2 \;\simeq\; Hom_\Gamma(A,N_2) \end{displaymath} \end{enumerate} \end{lemma} (e.g. \hyperlink{Ravenel86}{Ravenel 86, lemma A1.1.6}) \begin{remark} \label{}\hypertarget{}{} In computing the second page of $E$-[[Adams spectral sequences]], the second statement in lemma \ref{ComoduleHomInTermsOfCotensorProduct} is the key translation that makes the comodule [[Ext]]-groups on the page be equivalent to a [[Cotor]]-groups. The latter lend themselves to computation, for instance via [[Lambda-algebra]] or via the [[May spectral sequence]]. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The [[derived functor]] of cotensoring is called \emph{[[Cotor]]}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Cotensor products in [[noncommutative geometry]] appear in the role of [[space of sections]] of [[associated bundle|associated]] [[vector bundles]] of [[quantum principal bundle]]s (which in affine case correspond to [[Hopf-Galois extensions]]). See e.g. \begin{itemize}% \item [[Shahn Majid]], \emph{Foundations of quantum groups theory}, 2nd extended edition, paperback, Cambridge Univ. Press 2000. \end{itemize} For a nonaffine extension of the sections of associated quantum vector bundle, using [[localization]] theory see \begin{itemize}% \item [[Zoran Škoda]], \emph{Coherent states for Hopf algebras}, Lett. Math. Phys. 81 (2007), no. 1, 1--17. (\href{http://front.math.ucdavis.edu/0303.5357}{arXiv:math.QA/0303357}) \end{itemize} In [[Hopf algebra]] theory, cotensor products appear as early as in \begin{itemize}% \item [[John Milnor]], [[John Moore]], On the structure of Hopf algebras. Ann. of Math. (2) 81 1965 211--264. \end{itemize} The authors mention that they learned the notion from Mac Lane who knew it earlier in more general contexts. A textbook account is in \begin{itemize}% \item [[Doug Ravenel]], section A1.1 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, 1986/2003 \end{itemize} An important problem is that the cotensor product of bicomodules is in general (even for $\mathcal{M}={}_k\mathrm{Mod}$) \emph{not associative}, even up to an isomorphism. Cotensor products play a prominent role in various treatments of [[Galois theory]] in [[noncommutative geometry]]; a particularly geometric approach is within a version of [[noncommutative algebraic geometry]] based on usage of monoidal categories, as sketched in \begin{itemize}% \item [[Tomasz Maszczyk]], Noncommutative geometry through monoidal categories I, \href{http://front.math.ucdavis.edu/0707.1542}{arXiv:0707.1542} \end{itemize} [[!redirects cotensor products]] \end{document}