\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{countable chain condition} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{chains_not_antichains}{Chains, not antichains}\dotfill \pageref*{chains_not_antichains} \linebreak \noindent\hyperlink{products_of_separable_spaces}{Products of separable spaces}\dotfill \pageref*{products_of_separable_spaces} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The countable chain condition, appearing in various guises (for [[topological spaces]], for [[posets]], for [[Boolean algebras]]), frequently recurs in discussions on [[forcing]] in [[set theory]], particularly in discussions about preservation of [[cardinals]] and [[cofinalities]] in forcing extensions. It is something of a misnomer because it is really a condition about [[antichains]]. But in the topological context it is equivalent to a condition on chains, and the name has stuck. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} Suppose $P$ is a poset with a [[minimum|bottom]] element $0$. A \emph{(strong) antichain} in $P$ is a subset $A \subseteq P$ such that for all $a, b \in A$, we have either $a = b$ or $0$ is their [[meet]] (we need not assume general meets exist in $P$). If $P$ is a poset \emph{without} a bottom, we define $A \subseteq P$ to be an antichain if it becomes an antichain in $P^+$, the poset obtained by freely adjoining a bottom to $P$; this is equivalent to saying $a, b$ have no lower bound in $P$. \end{defn} \begin{defn} \label{}\hypertarget{}{} A poset $P$ satisfies the \emph{countable chain condition} if every antichain in $P$ is a [[countable set]] (i.e., at most denumerable). A topological space $X$ satisfies the countable chain condition if its [[frame]] of open sets $Op(X)$ does (as a poset). \end{defn} For future reference, we record a result on the countable chain condition in [[Heyting algebras]] $H$. Let $Reg(H)$ denote the Boolean algebra of regular elements ($x \in H$ such that $x = \neg \neg x$). \begin{lemma} \label{reg}\hypertarget{reg}{} A Heyting algebra $H$ satisfies the countable chain condition iff $Reg(H)$ does. \end{lemma} \begin{proof} The inclusion $Reg(H) \hookrightarrow H$ preserves meets and $0$, so if every antichain in $H$ is countable, then the same is true in $Reg(H)$. The quotient map $\neg \neg: H \to Reg(H)$ also preserves meets and $0$ (details are at [[Heyting algebra]]), and moreover the restriction of this map to an antichain $A \subseteq H$ is an injection (if $\neg \neg a = \neg \neg b$ for $a, b \in A$, then $a = b$ or $a \wedge b = 0$; in the latter case $a \leq \neg \neg a = \neg \neg a \wedge \neg \neg b = \neg \neg (a \wedge b) = 0$ and similarly $b = 0$, so $a = b$). So if every antichain in $Reg(H)$ is countable, the same is true in $H$. \end{proof} \hypertarget{chains_not_antichains}{}\subsubsection*{{Chains, not antichains}}\label{chains_not_antichains} \begin{prop} \label{}\hypertarget{}{} Let $B$ be a complete Boolean algebra. For cardinals $\kappa$, there is a bijective correspondence between \begin{itemize}% \item maps $g: \kappa \to B \setminus \{0\}$ such that $\{g(\alpha): \alpha \lt \kappa\}$ is an antichain in $B$; \item injective [[cocontinuous functor|colimit-preserving]] poset maps $f: \kappa \to B$, \end{itemize} here regarding $\kappa$ as an [[ordinal]]. \end{prop} \begin{proof} Given an antichain $g: \kappa \to B \setminus \{0\}$, define a colimit-preserving chain $f: \kappa \to B$ by $f(\beta) = \sum_{\alpha \lt \beta} g(\alpha)$ (so $f(0) = 0$, as mandated by colimit-preservation). Given an injective colimit-preserving chain $f: \kappa \to B$, define an antichain $g: \kappa \to B \setminus \{0\}$ by $g(\alpha) = f(\alpha + 1) \setminus f(\alpha) \coloneqq f(\alpha + 1) \wedge \neg f(\alpha)$. It is straightforward to verify that these assignments are inverse to one another. \end{proof} \begin{cor} \label{}\hypertarget{}{} $B$ satisfies the countable chain condition iff every chain $b_0 \lt b_1 \lt \ldots$ in $B$ is countable. \end{cor} This corollary is stated in terms of ascending chains, but by self-duality of Boolean algebras, it could equally well be stated in terms of descending chains. For topological spaces $X$, the frame $H = Op(X)$ satisfies the countable chain condition iff $Reg(H)$, the complete Boolean algebra of regular open sets, satisfies the countable chain condition (Lemma \ref{reg}). Now a regular element is just an element of the form $\neg U$, which for an open set $U$ is the complement of its closure. Thus for the topological case we deduce the following formulation in terms of chains: \begin{prop} \label{}\hypertarget{}{} A space $X$ satisfies the countable chain condition if and only if every collection of open sets $\{U_\alpha\}_{\alpha \lt \kappa}$ that satisfies the condition \begin{itemize}% \item $\widebar{U_\alpha} \subset \widebar{U_\beta}$ (strict inclusion between closures) whenever $\alpha \lt \beta$ \end{itemize} is countable. \end{prop} \hypertarget{products_of_separable_spaces}{}\subsection*{{Products of separable spaces}}\label{products_of_separable_spaces} We show in this section that arbitrary products of separable spaces satisfy the countable chain condition. \begin{prop} \label{sep}\hypertarget{sep}{} A [[separable space]] satisfies the countable chain condition. \end{prop} \begin{proof} Let $D$ be a countable dense set, and suppose given a collection of pairwise disjoint inhabited open sets $\{U_\alpha: \alpha \in A\}$. Each $U_\alpha$ contains at least one $d \in D$. Thus the map $D \to A$ sending $d \in D$ to the unique $\alpha \in A$ such that $d \in U_\alpha$ is surjective, and so $A$ is at most countable. \end{proof} Next we will need a result in combinatorial set theory. A \emph{$\Delta$-system}, also called a \emph{sunflower}, is a collection of finite sets $A_i$ such that any two intersect in the same set: there is some ``common core'' $S$ such that $A_i \cap A_j = S$ when $i \neq j$. \begin{lemma} \label{}\hypertarget{}{} \textbf{(Sunflower lemma)} Let $\mathcal{A}$ be an \emph{uncountable} collection of finite sets. Then there is some uncountable subset $\mathcal{B} \subseteq \mathcal{A}$ that is a sunflower. \end{lemma} \begin{proof} Without loss of generality, we may suppose all $A \in \mathcal{A}$ have the same cardinality $n$. We argue by induction on $n$. The case $n = 0$ is trivial. Assume the result holds for $n$, and suppose ${|A|} = n + 1$ for all $A \in \mathcal{A}$. If some $a \in X = \bigcup \mathcal{A}$ belongs to uncountably many $A \in \mathcal{A}$, then these $A$ form a collection $\mathcal{A}'$, and by inductive hypothesis the collection $\{A \setminus \{a\}: A \in \mathcal{A}'\}$ has a sunflower $\mathcal{B}'$. Then induction goes through by forming the sunflower $\{B + \{a\}: B \in \mathcal{B}'\}$. Otherwise, each $a \in X$ belongs to at most countably many $A \in \mathcal{A}$. In this case we may form an uncountable pairwise disjoint sequence $\{A_\alpha \in \mathcal{A}: \alpha \in \omega_1\}$ by transfinite induction: if $A_\alpha$ have been chosen for all $\alpha: \alpha \lt \beta \lt \omega_1$, then only countably many $A$ have an inhabited intersection with $\bigcup_{\alpha \lt \beta} A_\alpha$, and we simply choose an $A_\beta$ belonging to the uncountable collection that remains after removing such $A$. (So here the common core $S$ of the sunflower is the empty set.) \end{proof} \begin{prop} \label{prod}\hypertarget{prod}{} If $\{X_i\}_{i \in I}$ is an arbitrary family of spaces such that any finite product of the $X_i$ satisfies the countable chain condition, then the full product $X = \prod_{i \in I} X_i$ also satisfies the countable chain condition. \end{prop} \begin{proof} Suppose otherwise, that $\{U_\alpha\}_{\alpha \in A}$ is an uncountable collection of pairwise disjoint inhabited open sets of $X$. Shrinking them if necessary, we may suppose each $U_\alpha$ is a basic open of the form $\prod_{i \in F_\alpha} U_{\alpha, i} \times \prod_{i \notin F_\alpha} X_i$, where $F_\alpha \subseteq I$ is a finite set. The collection $\{F_\alpha\}$ has a sunflower by the Sunflower Lemma, say with common core $S$, and without loss of generality we may suppose $\{F_\alpha\}$ \emph{is} that sunflower (i.e., that the $\alpha$'s used to index the sunflower are just the $\alpha \in A$: throw away any other $\alpha \in A$). Let $\pi_S: X \to \prod_{i \in S} X_i$ be the obvious projection map. We first claim that the sets $\pi_S(U_\alpha)$ are pairwise disjoint, a purely set-theoretic matter. Suppose instead $u \in \pi_S(U_\alpha) \cap \pi_S(U_{\alpha'})$. Regard $u \in \prod_{i \in S} X_i$ as a section of the canonical projection $\sum_{i \in S} X_i \to S$. That it belongs to $\pi_S(U_\alpha)$ simply means it extends to some section $\sigma$ of the canonical map $\sum_{i \in A} X_i \to A$ such that the restriction of $\sigma$ to $F_\alpha$ factors through the inclusion $\sum_{i \in F_\alpha} U_{\alpha, i} \hookrightarrow \sum_{i \in A} X_i$, as on the left half of the following diagram: \begin{displaymath} \itexarray{ \sum_{i \in F_\alpha} U_{\alpha, i} & \hookrightarrow & \sum_{i \in A} X_i & \hookleftarrow & \sum_{i \in F_{\alpha'}} U_{\alpha', i} \\ \mathllap{\exists v} \uparrow & & \mathllap{\sigma} \uparrow \uparrow \mathrlap{\sigma'} & & \uparrow \mathrlap{\exists w} \\ F_\alpha & \hookrightarrow & A & \hookleftarrow & F_{\alpha'}\\ & \nwarrow & & \nearrow & \\ & & S & & } \end{displaymath} Similarly there is a section $\sigma': A \to \sum_{i \in A} X_i$ and a partial section $w$, as shown on the right half. With the partial sections $v$ and $w$ in hand, amalgamate them to a partial section over the union $F_\alpha \cup F_{\alpha'}$ (we can do this, as $v: F_\alpha \to \sum_{i \in A}$ and $w: F_{\alpha'} \to \sum_{i \in A} X_i$ both restrict to the same map $u$ on the intersection $S = F_\alpha \cap F_{\alpha'}$). Then extend the amalgamation $v \cup w$ however you please to a full section $\sigma'': A \to \sum_{i \in A} X_i$. This $\sigma''$ belongs to both $U_\alpha$ and $U_{\alpha'}$, contradicting their disjointness, and proving the claim. Thus the $\pi_S(U_\alpha)$ form an uncountable collection of open, inhabited, pairwise disjoint sets, contradicting the countable chain condition hypothesis on the finite product $\prod_{i \in S} X_i$. With this the proof is complete. \end{proof} \begin{cor} \label{}\hypertarget{}{} An arbitrary product of separable spaces $X_i$ satisfies the countable chain condition. \end{cor} \begin{proof} Any finite product of separable spaces $X_i$ is separable and thus satisfies the countable chain condition by Proposition \ref{sep}, so the full product does as well by Proposition \ref{prod}. \end{proof} [[!redirects countable chain conditions]] \end{document}