\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{counterexamples in algebra} This page lists counterexamples in [[algebra]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{group_theory_including_quasigroups_semigroups_etc}{Group Theory (including quasigroups, semigroups, etc)}\dotfill \pageref*{group_theory_including_quasigroups_semigroups_etc} \linebreak \noindent\hyperlink{ring_theory}{Ring Theory}\dotfill \pageref*{ring_theory} \linebreak \noindent\hyperlink{hopf_algebras}{Hopf Algebras}\dotfill \pageref*{hopf_algebras} \linebreak \noindent\hyperlink{homological_algebra}{Homological Algebra}\dotfill \pageref*{homological_algebra} \linebreak \noindent\hyperlink{galois_theory}{Galois Theory}\dotfill \pageref*{galois_theory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{group_theory_including_quasigroups_semigroups_etc}{}\subsection*{{Group Theory (including quasigroups, semigroups, etc)}}\label{group_theory_including_quasigroups_semigroups_etc} \begin{enumerate}% \item A non-[[abelian group|abelian]] [[group]], all of whose [[subgroup]]s are [[normal subgroup|normal]]: \begin{displaymath} Q \coloneqq \langle a, b | a^4 = 1, a^2 = b^2, a b = b a^3 \rangle \end{displaymath} \item A [[finitely presented group|finitely presented]], infinite, [[simple group]] [[Thomson's group]] T. \item A [[group]] that is not the [[fundamental group]] of any [[3-manifold]]. \begin{displaymath} \mathbb{Z}^4 \end{displaymath} \item Two [[finite group|finite]] non-[[isomorphism|isomorphic]] groups with the same [[order profile]]. \begin{displaymath} C_4 \times C_4, \qquad C_2 \times \langle a, b, | a^4 = 1, a^2 = b^2, a b = b a^3 \rangle \end{displaymath} \item A [[quasigroup]] that is not isomorphic to any [[loop (algebra)|loop]]. $\{a, b, c\}$ with multiplication table: \begin{displaymath} \begin{matrix} * & a & b & c \\ a & a & c & b \\ b & c & b & a \\ c & b & a & c \end{matrix} \end{displaymath} \item A counterexample to the converse of [[Lagrange's theorem]]. The [[alternating group]] $A_4$ has order $12$ but no [[subgroup]] of order $6$. \item A [[finite group]] in which the product of two [[commutator]]s is not a commutator. \begin{displaymath} G = \langle (a c)(b d), (e g)(f h), (i k)(j l), (m o)(n p), (a c)(e g)(i k), (a b)(c d)(m o), (e f)(g h)(m n)(o p), (i j)(k l)\rangle \subseteq S_{16} \end{displaymath} \item A [[finitely generated group]] with a non-finitely generated subgroup. The free group on two generators $x$ and $y$ has commutator subgroup freely generated by $[x^n,y^m]$. \item An Artinian but not Noetherian $\mathbb{Z}$-module. A [[Prüfer group]]. (The correct theorem is that an [[Artinian ring|Artinian]] \emph{[[ring]]} is [[Noetherian ring|Noetherian]].) \end{enumerate} \hypertarget{ring_theory}{}\subsection*{{Ring Theory}}\label{ring_theory} \begin{enumerate}% \item A [[ring]] that is right [[Noetherian ring|Noetherian]] but not left Noetherian: Matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ where $a \in \mathbb{Z}$ and $b,c \in \mathbb{Q}$. \item A ring that is local commutative Noetherian but not Cohen-Macaulay \begin{displaymath} k[x,y]/(x^2, x y) \end{displaymath} \item A [[number ring]] that is a [[principal ideal domain]] that is not Euclidean. \begin{displaymath} \mathbb{Q}(\sqrt{-19}) \end{displaymath} \item An [[epimorphism]] of [[rings]] that is not [[surjective]]. \begin{displaymath} \mathbb{Z} \to \mathbb{Q} \end{displaymath} \item A [[ring]] whose [[spectrum|spec]] has non-[[open subset|open]] [[connected]] components. \begin{displaymath} \prod_{n=1}^\infty \mathbb{F}_2 \end{displaymath} \item A non-[[Noetherian ring|Noetherian]] [[ring]] $A$ such that all local rings on $Spec(A)$ are Noetherian. \begin{displaymath} \prod_{n=1}^\infty \mathbb{F}_2 \end{displaymath} \item A [[number field]] whose [[ring of integers]] is Euclidean but not norm-Euclidean. \begin{displaymath} \mathbb{Q}(\sqrt{69}) \end{displaymath} \end{enumerate} \hypertarget{hopf_algebras}{}\subsection*{{Hopf Algebras}}\label{hopf_algebras} \begin{enumerate}% \item A non-commutative and non-cocommutative [[Hopf algebra]] \begin{displaymath} \begin{aligned} H &\coloneqq &\langle x, g | g^2 = 1, x^2 = 0, g x g = -x\rangle \\ \Delta(g) &= &g \otimes g, \\ \Delta(x) &= &x \otimes 1 + g \otimes x, \\ \epsilon(g) &=& 1, \\ \epsilon(x) &=& 0, \\ S(g) &= &g, \\ S(x) &= &- g x \end{aligned} \end{displaymath} \end{enumerate} \hypertarget{homological_algebra}{}\subsection*{{Homological Algebra}}\label{homological_algebra} \begin{enumerate}% \item An [[exact sequence]] that does not [[split sequence|split]]: \begin{displaymath} 0 \to \mathbb{Z} \stackrel{\times 2}{\to} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0 \end{displaymath} \end{enumerate} \hypertarget{galois_theory}{}\subsection*{{Galois Theory}}\label{galois_theory} \begin{enumerate}% \item A [[polynomial]], solvable in [[radical]]s, whose [[splitting field]] is not a [[radical extension]] of $\mathbb{Q}$. Take any cyclic cubic; that is, any cubic with rational coefficients, irreducible over the [[rational number|rational]]s, with [[Galois group]] cyclic of order $3$. \item A composition of two normal extensions need not be normal: \end{enumerate} \begin{displaymath} \mathbb{Q} \subset \mathbb{Q}(2^{1/2}) \subset \mathbb{Q}(2^{1/4}) \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} The initial import of counterexamples in this entry was taken from \href{http://mathoverflow.net/questions/29006/counterexamples-in-algebra}{this MO question}. \end{document}