\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{crossed G-algebra} \hypertarget{crossed_galgebra}{}\section*{{Crossed G-algebra}}\label{crossed_galgebra} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{nomenclature}{Nomenclature}\dotfill \pageref*{nomenclature} \linebreak \noindent\hyperlink{definitions}{Definitions:}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{graded_algebra}{Graded $G$-algebra}\dotfill \pageref*{graded_algebra} \linebreak \noindent\hyperlink{example}{Example:}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{frobenius_algebra}{Frobenius $G$-algebra}\dotfill \pageref*{frobenius_algebra} \linebreak \noindent\hyperlink{examples_continued}{Examples continued:}\dotfill \pageref*{examples_continued} \linebreak \noindent\hyperlink{crossed_algebra}{Crossed $G$-algebra}\dotfill \pageref*{crossed_algebra} \linebreak \noindent\hyperlink{note}{Note:}\dotfill \pageref*{note} \linebreak \noindent\hyperlink{operations_on_crossed_algebras}{Operations on crossed $G$-algebras}\dotfill \pageref*{operations_on_crossed_algebras} \linebreak \noindent\hyperlink{related_notions}{Related notions}\dotfill \pageref*{related_notions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} (Here $G$ will be a group (a discrete one for the moment).) A crossed $G$-algebra is a type of $G$-[[graded algebra]], with an inner product and a `crossed' or `twisted' multiplication. They arise as the analogues of [[Frobenius algebras]] for 2d-[[HQFTs]], [[equivariant TQFTs]] and in slight generality in the study of symmetries of singularities. They were introduced by [[Turaev]] in 1998. The generalised structures have been studied by [[R. Kaufmann]]. \hypertarget{nomenclature}{}\subsection*{{Nomenclature}}\label{nomenclature} [[Greg Moore|Moore]] and [[Graeme Segal|Segal]] (see references below) do not like the term `crossed algebra' and suggest the alternative name `Turaev algebra'. \hypertarget{definitions}{}\subsection*{{Definitions:}}\label{definitions} We will lead up to the definition of crossed $G$-algebra through various stages. We need a particular form of [[graded algebra]] in which the summands are projective modules, so we give that form first. \hypertarget{graded_algebra}{}\subsubsection*{{Graded $G$-algebra}}\label{graded_algebra} A \textbf{graded $G$-algebra} or \textbf{$G$-algebra} over a field (or more generally a commutative ring), $\mathbb{k}$ is an associative algebra, $L$, over $\mathbb{k}$ with a decomposition, \begin{displaymath} L = \bigoplus_{g\in G} L_g, \end{displaymath} as a direct sum of projective $\mathbb{k}$-modules of finite type such that (i) $L_g L_h \subseteq L_{gh}$ for any $g,h \in G$ (so, if $\ell_1$ is graded $g$, and $\ell_2$ is graded $h$, then $\ell_1\ell_2$ is graded $gh$), and (ii) $L$ has a unit $1 = 1_L\in L_1$ for 1, the identity element of $G$. \hypertarget{example}{}\subsubsection*{{Example:}}\label{example} (i) The [[group algebra]], $\mathbb{k}[G]$, has an obvious $G$-algebra structure in which each summand of the decomposition is free of dimension 1. (ii) For any associatve $\mathbb{k}$-algebra, $A$, the algebra, $A[G]= A\otimes_\mathbb{k}\mathbb{k}[G]$, is also $G$-algebra. Multiplication in $A[G]$ is given by $(ag)(bh) = (ab)(gh)$ for $a,b \in A$, $g,h \in G$, in the obvious notation. (iii) If $G$ is the trivial group, then a $G$-graded algebra is just an algebra (of finite type), of course. \hypertarget{frobenius_algebra}{}\subsubsection*{{Frobenius $G$-algebra}}\label{frobenius_algebra} A \textbf{Frobenius $G$-algebra} is a $G$-algebra, $L$, together with a symmetric $\mathbb{k}$-bilinear form, \begin{displaymath} \rho : L\otimes L \to \mathbb{k} \end{displaymath} such that (i) $\rho(L_g\otimes L_h) = 0$ if $h \neq g^{-1}$; (ii) the restriction of $\rho$ to $L_g \otimes L_{g^{-1}}$ is non-degenerate for each $g\in G$; and (iii) $\rho(ab,c) = \rho(a,bc)$ for any $a,b,c \in L$. $\backslash$ We note that (ii) implies that $L_{g^{-1}} \cong L_g^*$, the dual of $L_g$. \hypertarget{examples_continued}{}\subsubsection*{{Examples continued:}}\label{examples_continued} (i) The group algebra, $L = \mathbb{k}[G]$, is a Frobenius $G$-algebra with $\rho(g,h) = 1$ if $gh = 1$, and 0 otherwise, and then extending linearly. (Here we write $g$ both for the element of $G$ labelling the summand $L_g$, and the basis element generating that summand.) (iii) For $G$ trivial, a Frobenius 1-algebra is a [[Frobenius algebra]]. \hypertarget{crossed_algebra}{}\subsubsection*{{Crossed $G$-algebra}}\label{crossed_algebra} Finally the notion of crossed $G$-algebra combines the above with an action of $G$ on $L$, explicitly: A \textbf{crossed $G$-algebra} over $\mathbb{k}$ is a Frobenius $G$-algebra, $L$, over $\mathbb{k}$ together with a group homomorphism, \begin{displaymath} \varphi: G \to Aut(L) \end{displaymath} satisfying: (i) if $g\in G$ and we write $\varphi_g = \varphi(g)$ for the corresponding automorphism of $L$, then $\varphi_g$ preserves $\rho$, (i.e., $\rho(\varphi_ga,\varphi_gb) = \rho(a,b)$) and \begin{displaymath} \varphi_g(L_h) \subseteq L_{ghg^{-1}} \end{displaymath} for all $h\in G$; (ii) $\varphi_g|_{L_g} = id$ for all $g\in G$; (iii) (twisted or crossed commutativity) for any $g,h \in G$, $a\in L_g$, $b\in L_h$, $\varphi_h(a)b = ba$; (iv) for any $g,h \in G$ and $c \in L_{ghg^{-1}h^{-1}}$, \begin{displaymath} Tr(c\varphi_h : L_g \to L_g) = Tr(\varphi_{g^{-1}}c : L_h \to L_h), \end{displaymath} where $Tr$ denotes the $\mathbb{k}$-valued trace of the endomorphism. (The homomorphism $c\varphi_h$ sends $a\in L_g$ to $c\varphi_h(a) \in L_g$, whilst $(\varphi_{g^{-1}}c)(b) = \varphi_{g^{-1}}(cb)$ for $c \in L_h$. This is sometimes called the `torus condition'.) \hypertarget{note}{}\subsubsection*{{Note:}}\label{note} a) We note that the usage of terms differs between Turaev's book (2010) and here, as we have taken `crossed $G$-algebra' to include the Frobenius condition. We thus follow Turaev's original convention (preprint 1999) in this. b) The useful terminology `twisted sector' in a crossed $G$-algebra refers to a summand, $L_g$, for and index, $g$, which is not the identity element of $G$, of course, then $L_1$ is called the `untwisted sector' \hypertarget{operations_on_crossed_algebras}{}\subsection*{{Operations on crossed $G$-algebras}}\label{operations_on_crossed_algebras} (To be added) \hypertarget{related_notions}{}\subsection*{{Related notions}}\label{related_notions} \begin{itemize}% \item crossed $C$-algebra for a [[crossed module]] of groups; \end{itemize} \emph{[[twisted G-algebra]]} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item V. [[Turaev]], \emph{Homotopy Quantum Field Theory} , EMS Tracts in Math.10, European Math. Soc. Publ. House, Zurich 2010. (for the detailed development and the links with low dimensional topology and [[HQFT]]s). \item [[Greg Moore]], [[Graeme Segal]], \emph{D-branes and K-theory in 2D topological field theory} (\href{http://arxiv.org/abs/hep-th/0609042}{arXiv hep-th 0609042}) \end{itemize} [[!redirects crossed G-algebras]] [[!redirects Turaev algebra]] \end{document}