\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{crossed module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{diagrammatic_definition}{Diagrammatic definition}\dotfill \pageref*{diagrammatic_definition} \linebreak \noindent\hyperlink{definition_in_terms_of_equations}{Definition in terms of equations}\dotfill \pageref*{definition_in_terms_of_equations} \linebreak \noindent\hyperlink{Morphisms}{Morphisms}\dotfill \pageref*{Morphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{crossed module} (of groups) is: \begin{itemize}% \item from the [[nPOV]]: a convenient way to encode a [[strict 2-group]] $G$ in terms of a morphism of two ordinary [[group]]s $\partial : G_2 \to G_1$. \end{itemize} From other points of view it is: \begin{itemize}% \item like the inclusion of a [[normal subgroup]], but isn't an inclusion in general; \item like a [[module]] with a twisted `multiplication'; \item like the action of automorphisms on a group; \item a [[crossed complex]] concentrated in degrees $1$ and $2$; \item a nonabelian [[chain complex|chain-complex]]; \item a [[Moore complex]] of certain [[simplicial group]]s. \end{itemize} Historically they were the first example of [[higher dimensional algebra]] to be studied. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{diagrammatic_definition}{}\subsubsection*{{Diagrammatic definition}}\label{diagrammatic_definition} A \textbf{crossed module} is \begin{itemize}% \item a pair of [[group]]s $G_2, G_1$, \item morphisms of groups \begin{displaymath} G_2 \stackrel{\delta }{\to}{G_1} \end{displaymath} and \begin{displaymath} G_1 \stackrel{\alpha}{\to} Aut(G_2) \end{displaymath} (which below we will conceive of as a map $\alpha : G_1 \times G_2 \to G_2$ analogously to the adjoint action $Ad : G \times G \to G$ of a group on itself) \item such that \begin{displaymath} \itexarray{ G_2 \times G_2 &&\stackrel{\delta \times Id}{\to}&& G_1 \times G_2 \\ & {}_{Ad}\searrow && \swarrow_\alpha \\ && G_2 } \end{displaymath} and \begin{displaymath} \itexarray{ G_1 \times G_2 &\stackrel{\alpha}{\to}& G_2 \\ \downarrow^{Id \times \delta} && \downarrow^{\delta} \\ G_1 \times G_1 &\stackrel{Ad}{\to}& G_1 } \end{displaymath} commute. \end{itemize} We may use the notation $(G_2,G_1,\delta)$, for this if the action is fairly obvious, including an explicit [[action]], $(G_2,G_1,\delta,\alpha)$, if there is a risk of confusion. If one unwraps the definitions in terms of automorphism groups to use merely finite products (for instance, writing the actions as $G_1 \times G_2 \to G_2$, together with commuting diagrams encoding the necessary properties), then crossed modules can be defined internal to any [[cartesian monoidal category]] $C$, namely as a structure involving internal groups in $C$. For instance, one might consider Lie crossed modules, which are crossed modules of [[Lie groups]]. These are relevant for certain models of the [[String group]]. Alternatively, one can take another tack, and define crossed module objects in categories that support enough structure without using internal groups, the most general case of which, in practice, are [[semiabelian categories]]. There one considers the objects to behave `like groups' in the sense that the category they form looks very much like the category of groups. Janelidze (\hyperlink{Janelidze_03}{Janelidze 2003}) defined the notion of internal crossed module in a semiabelian category (so that in the prototypical example of the category of groups, they reduce to the above notion). A key result, also due to (\hyperlink{Janelidze_03}{Janelidze 2003}) and generalising the Brown-Spencer theorem from the case of ordinary crossed modules, is the following: \begin{theorem} \label{}\hypertarget{}{} \textbf{(Janelidze's Brown-Spencer theorem).} Let $C$ be a semiabelian category. Then the category $XMod(C)$ of crossed modules in $C$ is equivalent to the category $Gpd(C)$ of internal groupoids in $C$. \end{theorem} Here the notion of [[internal groupoid]] is the usual diagrammatic notion. \hypertarget{definition_in_terms_of_equations}{}\subsubsection*{{Definition in terms of equations}}\label{definition_in_terms_of_equations} The two [[diagram]]s can be translated into equations, which may often be helpful. \begin{itemize}% \item If we write the effect of acting with $g_1\in G_1$ on $g_2\in G_2$ as ${}^{g_1}g_2$, then the second diagram translates as the equation: \begin{displaymath} \delta({}^{g_1}g_2) = g_1\delta(g_2)g_1^{-1}. \end{displaymath} In other words, $\delta$ is equivariant for the action of $G_1$. \item The first diagram is slightly more subtle. The group $G_2$ can act on itself in two different ways, (i) by the usual conjugation action, ${}^{g_2}g^\prime_2=g_2g^\prime_2g_2^{-1}$ and (ii) by first mapping $g_2$ down to $G_1$ and then using the action of that group back on $G_2$. The first diagram says that the two actions coincide. Equationally this gives: \begin{displaymath} {}^{\delta(g_2)}g^\prime_2 = g_2g^\prime_2g_2^{-1}. \end{displaymath} This equation is known as the \textbf{Peiffer rule} in the literature. Another way to interpret it is to rewrite it slightly: \begin{displaymath} {}^{\delta(g_2)}g^\prime_2 g_2 = g_2g^\prime_2 \end{displaymath} The Peiffer rule can thus be seen as a `twisted commutativity law' for $G_2$. \end{itemize} \hypertarget{Morphisms}{}\subsubsection*{{Morphisms}}\label{Morphisms} For $G$ and $H$ two [[strict 2-group]]s coming from crossed modules $[G]$ and $[H]$, a morphism of strict 2-groups $f : G \to H$, and hence a morphism of crossed modules $[f] : [G] \to [H]$ is a [[2-functor]] \begin{displaymath} \mathbf{B}f : \mathbf{B}G \to \mathbf{B}H \end{displaymath} between the corresponding [[delooping|delooped]] [[2-groupoid]]s. Expressing this in terms of a diagram of the ordinary groups appearing in $[G]$ and $[H]$ yields a diagram called a [[butterfly]]. See there for more details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $H$ any group, its [[automorphism]] crossed module is \begin{displaymath} AUT(H) := (G_2 = H, G_1 = Aut(H), \delta = Ad, \alpha = Id) \,. \end{displaymath} Under the equivalence of crossed modules with [[strict 2-group]]s this corresponds to the [[automorphism 2-group]] \begin{displaymath} Aut_{Grpd}(\mathbf{B}H) \end{displaymath} of [[automorphism]]s in the category [[Grpd]] of [[groupoid]]s on the one-object [[delooping]] [[groupoid]] $\mathbf{B}H$ of $H$. \item Almost the canonical example of a crossed module is given by a group $G$ and a normal subgroup $N$ of $G$. We take $G_2 = N$, and $G_1 = G$ with the action given by conjugation, whilst $\delta$ is the inclusion, $inc : N \to G$. This is `almost canonical', since if we replace the groups by simplicial groups $G_.$ and $N_.$, then $(\pi_0(G_.),\pi_0(N_.),\pi_0(inc))$ is a crossed module, and given any crossed module, $(C,P,\delta)$, there is a simplicial group $G_.$ and a normal subgroup $N_.$, such that the construction above gives the given crossed module up to isomorphism. \item Another standard example of a crossed module is $M \to ^0 P$ where $P$ is a group and $M$ is a $P$-module. Thus the category of modules over groups embeds in the category of crossed modules. \item If $\mu: M \to P$ is a crossed module with cokernel $G$, and $M$ is abelian, then the operation of $P$ on $M$ factors through $G$. In fact such crossed modules in which both $M$ and $P$ are abelian should not be sneezed at! A good example is $\mu: C_2 \times C_2 \to C_4$ where $C_n$ denotes the cyclic group of order $n$, $\mu$ is injective on each factor, and $C_4$ acts on the product by the twist. This crossed module has a [[classifying space]] $X$ with fundamental and second homotopy groups $C_2$ and non trivial $k$-invariant in $H^3(C_2, C_2)$, so $X$ is not a product of [[Eilenberg-MacLane space]]s. However the crossed module is an algebraic model and so one one can do algebraic constructions with it. It gives in some ways a better feel for the space than the $k$-invariant. The [[higher homotopy van Kampen theorem]] implies that the above $X$ gives the 2-type of the [[mapping cone]] of the map of [[classifying space]]s $BC_2 \to BC_4$. \item Suppose $F\stackrel{i}{\to}E\stackrel{p}{\to}B$ is a [[fibration sequence]] of [[pointed object|pointed spaces]], thus $p$ is a [[fibration]] in the [[model structure on topological spaces|topological sense]] (lifting of paths and homotopies of paths will suffice), $F = p^{-1}(b_0)$, where $b_0$ is the basepoint of $B$. The fibre $F$ is pointed at $f_0$, say, and $f_0$ is taken as the basepoint of $E$ as well. There is an induced map on [[homotopy group]]s \begin{displaymath} \pi_1(F) \stackrel{\pi_1(i)}{\longrightarrow} \pi_1(E) \end{displaymath} and if $a$ is a loop in $E$ based at $f_0$, and $b$ a loop in $F$ based at $f_0$, then the composite path corresponding to $a b a^{-1}$ is [[homotopy|homotopic]] to one wholly within $F$. To see this, note that $p(a b a^{-1})$ is [[null homotopic loop|null homotopic]]. Pick a [[homotopy]] in $B$ between it and the constant map, then lift that homotopy back up to $E$ to one starting at $a b a^{-1}$. This homotopy is the required one and its other end gives a well defined element ${}^a b \in \pi_1(F)$ (abusing notation by confusing paths and their homotopy classes). With this action $(\pi_1(F), \pi(E), \pi_1(i))$ is a crossed module. This will not be proved here, but is not that difficult. (Of course, secretly, this example is `really' the same as the previous one since a fibration of [[simplicial group]]s is just morphism that is an [[epimorphism]] in each degree, and the [[fibration sequence|fibre]] is thus just a [[simplicial group|normal simplicial subgroup]]. What is fun is that this generalises to `higher dimensions'.) \item A particular case of this last example can be obtained from the inclusion of a subspace $A\to X$ into a pointed space $(X,x_0)$, (where we assume $x_0\in A$). We can replace this inclusion by a homotopic fibration, $\overline{A}\to X$ in `the standard way', and then find that the fundamental group of its fibre is $\pi_2(X,A,x_0)$. \end{itemize} A deep theorem of J.H.C. Whitehead is that the crossed module \begin{displaymath} \delta: \pi_2(A \cup \{e^2_\lambda\}_{\lambda \in \Lambda},A,x) \to \pi_1(A,x) \end{displaymath} is the [[free crossed module]] on the characteristic maps of the $2$-cells. One utility of this is that it enables the expression of nonabelian chains and boundaries ideas in dimensions $1$ and $2$: thus for the standard picture of a Klein Bottle formed by identifications from a square $\sigma$ the formula \begin{displaymath} \delta \sigma = a+b-a +b \end{displaymath} makes sense with $\sigma$ a generator of a free crossed module; in the usual abelian chain theory we can write only $\partial \sigma =2b$, thus losing information. Whitehead's proof of this theorem used knot theory and transversality. The theorem is also a consequence of the $2$-dimensional Seifert-van Kampen Theorem, proved by Brown and Higgins, which states that the functor $\Pi_2$: (pairs of pointed spaces) $\to$ (crossed modules) preserves certain colimits (see reference below). This last example was one of the first investigated by Whitehead and his proof appears also in a little book by [[Hilton]]; see also [[Nonabelian algebraic topology]], however the more general result of Brown and Higgins determines also the group $\pi_2(X \cup CA,X,x)$ as a crossed $\pi_1(X,x)$ module, and then Whitehead's result is the case with $A$ is a wedge of circles. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group]] \item [[2-group]], \textbf{crossed module}, [[differential crossed module]] \item [[3-group]], [[2-crossed module]] / [[crossed square]], [[differential 2-crossed module]] \item [[n-group]] \item [[∞-group]], [[simplicial group]], [[crossed complex]], [[hypercrossed complex]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The concept was introduced in \begin{itemize}% \item [[J. H. C. Whitehead]], \emph{Combinatorial Homotopy II}, Bull. Amer. Math. Soc., 55 (1949), 453--496. \end{itemize} see also \begin{itemize}% \item [[Peter J. Hilton]], \emph{An Introduction to Homotopy Theory}, Cambridge University Press 1953 \end{itemize} Further discussion is in \begin{itemize}% \item [[Ronnie Brown]], [[Philip Higgins]], \emph{On the connections between the second relative homotopy groups of some related spaces}, \emph{Proc. London Math. Soc.} (3) 36 (1978) 193-212. \item [[Ronnie Brown]], \emph{Groupoids and crossed objects in algebraic topology}, \emph{Homology, Homotopy and Applications}, 1 (1999) 1-78. \item [[George Janelidze]], \emph{Internal crossed modules}, Georgian Mathematical Journal \textbf{10} (2003) pp 99-114. (\href{https://eudml.org/doc/51553}{EuDML}) \item [[Ronnie Brown]], [[Philip Higgins]], and R. Sivera, \emph{[[Nonabelian Algebraic Topology]]: Filtered spaces, Crossed Complexes, Cubical Homotopy Groupoids}, EMS Tracts in Mathematics, Vol. 15, (Autumn 2010). \end{itemize} [[!redirects crossed modules]] \end{document}